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The obtained dispersion relation for waves in nonmagnetized plasma agree well
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Simuloidut dispersiorelaatiot aalloille plasmassa ilman ulkoista magneettikenttää
vastaavat tarkasti teorian ennustamaa dispersiota. Plasmassa ulkoisen magneet-
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kuin teorian ennustamat, mutta eroavat teorian relaatioista jonkin verran. So-
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Symbols and abbreviations

Symbols

Symbol Unit Explanation

qs C Charge of a charge species s
ms kg Mass of a charge species s
ns m−3 Number density of a charge species s
us ms−1 Bulk velocity of a charge species s
ωps rads−1 Plasma frequency of a charge species s
ωcs rads−1 Gyro frequency of a charge species s
B T Magnetic flux density
E V m−1 Electric field strength
J A Current
ω rads−1 Angular frequency
k = 2π/λ m−1 Amplitude of a wave vector
c ms−1 Speed of light in vacuum
n = ck/ω 1 Index of refraction
~K - Dielectric tensor
~σ - Resistivity tensor

Abbreviations
Abbreviation Explanation

FMI Finnish meteorological institute
PIC Particle in cell
EM Electromagnetic
X-mode Extraordinary wavemode
O-mode Ordinary wavemode
FDTD Finite-difference time-domain
PML Perfectly matched layer
FC Interpolation from face values to cell values
EC Interpolation from edge values to cell values
CN Interpolation from cell values to node values



1 Introduction
This special assignment studies the dispersion of electromagnetic (EM) waves in cold
plasma using a fully–kinetic particle–in–cell (PIC) simulation model. The simulation
is built on an existing hybrid simulation code, which was originally developed to
study planetary plasma environments. The addition of EM waves to the original
hybrid simulation platform allows a precise simulation of the propagation of EM
waves in a carefully controlled plasma environment.

In the year 2017 Finland will celebrate 100 hundred years of independence. The
celebrations include launching a Finland 100 cubesat to a polar orbit above Finland.
The satellite payload includes a radio transmitter and receiver, for publicity and
scientific purposes. The receiver will be used to listen to radio signals and to pinpoint
the origins of single radio transmissions and to show the possibilities of atmospheric
research by using cubesats. For this purpose, the propagation of radio waves in the
ionosphere above Finland is investigated using a house made ray tracing software.
While ray tracing provides results on the propagation of rays, the comparison of he
propagation of the rays with a completely kinetic plasma simulation would provide
further proof for the accuracy of different methods of ray propagation.

EM waves are propagated using the finite–difference time–domain method in a
Yee type grid, shown in Fig. 4, where magnetic field values are stored in cell faces
and electric field values in cell edges. This is a well understood simulation method
for EM waves with well known error sources. The details of the FDTD method are
also presented in section 3.2. The work on the simulation platform includes moving
the calculation of the electric field values from the cell nodes to the cell edges for
more accurate propagation of the EM wave.

In the previous version of the simulation code, the EM waves were reflected back
from the edges of the simulation box. These reflections made it impossible to study
time-scales larger than those related to one or two wavelengths. This made the
study of dispersion of the EM waves in plasma rather complicated. Here, absorbing
boundary conditions for EM waves are added to the simulation model, which allows
the study of longer time-series and accurate study of the dispersion in plasma. In
this special assignment, the dispersion of EM waves in nonmagnetized plasma and
magnetized plasma are studied and compared to the predictions of the cold plasma
theory. The obtained dispersion relation in nonmagnetized plasma accurately matches
the predictions of theory. In magnetized plasma, the main features of the dispersion
of ordinary and extraordinary modes are obtained. Currently, the length-scales
required for atmospheric radio wave propagation are too computationally expensive
to be studied with a fully kinetic simulation model. Therefore, the possibility of
replacing particles with relative permittivity is also shortly studied.
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2 Background

2.1 Definition of plasma

As important and typical as plasma is in the universe, there is no single definition of
a plasma. According to a generic description, plasma is a gas that has been partly
ionized and exhibits collective behaviour. Here, the plasma considered is always cold
plasma, where thermal effects of ions and electrons are neglected. At a macroscopic
scale, an equal amount of negative and positive charges exist in plasma, which is
why plasma is called quasi-neutral. Here, plasma is assumed to consist of a single
ion species with elementary charge qi = −qe. The plasma thus holds equal number
of electrons and positively charged ions. [1]

Due to the free charges, plasma reacts strongly to external electromagnetic fields.
Plasma is often characterized with plasma frequency

ωps =
√
nsq2

s

msε0
, (1)

where s denotes a charge species, n is the species number density, qs the charge of the
particle, ms the mass of the particle and ε0 the permittivity of free space. Plasma
frequency describes the intrinsic oscillation of the charge density in plasma. The
plasma frequency for electrons is magnitudes larger than that of the ions, due to the
mass difference of the particles. As lighter particles, the behaviour of electrons defines
the properties of a plasma to a great extent, which is why the term plasma frequency
typically refers to the electron plasma frequency. For a plasma in external magnetic
field, the movement of the charged particles is more restricted. The particles are
able to move along the direction of the magnetic field, but are restricted to circular
trajectories perpendicular to the field. This circular motion is described by the
gyrofrequency

ωcs = qsB

ms

, (2)

where B is the strength of the external magnetic field. Both plasma frequency and
the gyro frequency are important for the dispersion of electromagnetic waves inside
plasma.

2.2 Waves in plasma

For a wave with multiple frequency components, a certain frequency propagates with
a phase speed defined as

vp = ω

k
, (3)

where ω is the angular frequency of the wave and k = 2π
λ

is the magnitude of the
wave vector, where λ is the wavelength. It is possible that the phase velocity exceeds
the speed of light c, which is, in fact, typical for electromagnetic waves in plasma.
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However, the information carried by the wave propagates with wave packets with a
group speed that is always lower than the speed of light

vg = ∂ω

∂k
. (4)

The frequency of the wave and the wavelength are connected through a dispersion
relation. Electromagnetic waves in vacuum are described by a familiar dispersion
relation, ω = ck. However, in a dispersive medium, such as plasma, different
frequencies may propagate with different group speeds and the frequency and the
wavelength of the wave are connected through a more complicated relation. The
index of refraction is defined as n = ck/ω. In the following sections, dispersion
relations for waves in nonmagnetized and magnetized plasmas are introduced.

The propagation of the electromagnetic waves in plasma is governed by the
Maxwell’s equations together with the equations of motion for the charged particles
in the plasma. The plasma is assumed to remain quasi-neutral, which is guaranteed
by the continuation equation for charge species s

∂ns
∂t

+∇ · (nsus) = 0, (5)

where ns is the number density and us the bulk velocity of charge species s. The
equation of motion for the particles is effected only by the electric field and Lorentz
force

ms
∂us
∂t

= qs(E + us ×B), (6)

where e.g. the effects of thermal pressure and collisions have been neglected. The
electric and magnetic fields are connected through the Maxwell’s equations

∇× E =− ∂B
∂t

(7)

∇×B− 1
c2
∂E
∂t

=µ0J (8)

∇ · E = 1
ε0

∑
s

qsns (9)

∇ ·B =0, (10)

J =
∑
s

qsnsus = 1
µ0
~σ · E (11)

The Eq. (7) is the Maxwell-Faraday law and the Eq. (8) is the Amperè-Maxwell’s
law. The current is connected to the movement of charged particles through Eq. (11),
where the current is the sum of all the drift currents of all charged particle species.
The second order resistivity tensor ~σ, which connects the current and the electric
field, is introduced later. The Eqs. (9) and (10) are the Gauss’ laws for electric and
magnetic fields. The divergence of a magnetic field is zero and an electric field is
produced by free charges.
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By assuming harmonic time dependencies E = E0e
i(k·r−ωt), differential terms can

be simplified to ∇· = ik·, ∇× = ik×, and ∂
∂t

= −iω. By linearizing Eqs. (7)-(11),
the homogeneous wave equation can be solved [1][2]

n× (n× E + ~K · E) = 0, (12)

where n = ck/ω is the index of refraction and ~K is the dielectric tensor

~K = ~1− ~σ

iωε0
. (13)

The behaviour of electromagnetic fields in plasma can now be reduced to a problem
of solving the dielectric tensor for the different plasma environments.

2.3 Propagation in a nonmagnetized plasma

When an electromagnetic wave enters plasma, the frequency and the wavelength are
no longer connected through the simple relation ω = c/k. By using the homogeneous
wave equation derived in the section 2.2, it is possible to predict the propagation
of an EM-wave in a cold plasma without an external magnetic field, that is, in an
isotropic plasma. Equation (6) simplifies to

m
∂u
∂t

= qE, (14)

which simplifies to m(−iωu) = qE, by assuming harmonic time dependencies. By
inserting the velocity into equation (11) the current can be expressed as

J =
∑
s

iq2ns
msω

E ≈ ie2ne
meω

E, (15)

where the contribution of the ions is magnitudes smaller than the contribution of
the electrons, due to the difference between the mass of electrons and ions. From Eq.
(15) the resistivity tensor can be identified as ~σ = ~1 ie2ne

meω
, which can then be used to

write the dielectric tensor

~K = ~1− e2ne
meω2ε0

= 1−
ω2
p

ω2 , (16)

where the defition of the plasma frequency Eq. (1) is used for the electron plasma
frequency. With the relation n = ck/ω and the dielectric tensor, the homogeneous
wave equation Eq. (12) simplifies to

c2k× (k× E) + (ω2 − ω2
p) · E = 0. (17)

The result is, in fact, a matrix equation. It is now possible to decide that the
investigated wave is propagating in the z-direction and the corresponding wave vector
is k = kẑ. The set of equations in matrix form
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−c2k2 + ω2 − ω2

pe 0 0
0 −c2k2 + ω2 − ω2

pe 0
0 0 ω2 − ω2

pe



Ex

Ey

Ez

 = 0, (18)

which has non-trivial solutions when the determinant of the matrix is zero. The
determinant of the matrix

(−c2k2 + ω2 − ω2
pe)2(ω2 − ω2

pe) = 0, (19)

provides two solutions. The solution ω = ωpe is a non-propagating electrostatic mode
that oscillates at the plasma frequency. The electric field of the electrostatic mode is
parallel to the wave vector k and the wave is called longitudinal.

The other root of the determinant is a solution that describes propagating waves.

ω2 = c2k2 + ω2
pe. (20)

Harmonic wave form is described by an exponential function E = E ei(k·x−ωt).
This wave propagates to ẑ-direction and the magnetic and the electric fields are
perpendicular to the direction of the propagation, similar to an electromagnetic
wave in a vacuum. The Eq. (20) provides a relation between the wave vector k and
frequency ω, it is thus called the dispersion relation of nonmagnetized plasma. A
closer inspection reveals that not all frequencies are able to propagate in plasma due
to wave vector k reaching purely imaginary values

k = ±1
c

√
ω2 − ω2

pe. (21)

When the frequency of the incident wave is smaller than the plasma frequency, k is
purely imaginary and the electric field becomes an exponential function. The electric
field can either grow exponentially, which is unphysical without a source inside the
plasma region, or decay exponentially. When the frequency of the incoming wave
approaches the plasma frequency, the value of k approaches zero and the wavelength
of the wave grows to infinity. This wave is not able to propagate in plasma and
is reflected. The analytical solution of the dispersion relation is shown in Fig. 1,
where it is compared to the dispersion relation of an EM-wave in vacuum. In higher
frequencies the EM-wave in plasma approach the behaviour of an EM-wave in a
vacuum.
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k

ω
pe

ω = c
2
k

2
 + ω

pe

2
          

      ω = ck

Figure 1: The possible frequencies as a function of the corresponding amplitudes of the wave
vector k. The analytical solution of the dispersion relation in a nonmagnetized plasma is shown in
red and the dispersion in vacuum is shown in blue.

2.4 Dispersion relation for magnetized plasma

The addition of an external magnetic field restricts the propagation of EM-waves in
certain directions. The movement of the particles is not restricted parallel to the
external magnetic field, but the perpendicular motion is affected by the external
magnetic field. This generates new wave modes that can also have electric field
components that are parallel to the direction of the propagation of the wave.

The analysis of the dispersion of the electromagnetic waves in cold plasma can be
done as follows (see e.g. Cold Plasma waves [1]).The bulk flow of the charged particles
follows Eq. (6) and the effects of the external magnetic field on charged particle
species s are described by gyrofrequency ωcs, as defined in Eq. (2). The derivation of
the dielectric tensor resembles closely the derivation of the isotropic dielectric tensor.
The largest difference is the second order conductivity tensor compared to the first
order tensor. The derivation begins by identifying the conductivity tensor from the
equations of motion (6) and once again assuming harmonic time dependencies

J = ~σ · E =
∑ nse

2

ms


−iω

ω2
cs−ω2

ωcs

ω2
cs−ω2 0

− ωcs

ωcs−ω2
−iω

ω2
cs−ω2 0

0 0 i
ω

E. (22)

The dielectric tensor is obtained from the resistivity tensor through relation in Eq.
(13)
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~K =


S −iD 0
iD S 0
0 0 P

 , (23)

where the coefficients are

S = 1−
∑
s

ω2
ps

ω2 − ω2
cs

, D =
∑
s

ωcsω
2
ps

ω(ω2 − ω2
cs)
, P = 1−

∑
s

ω2
ps

ω2 , (24)

where the index s denotes all charged particle species. The dielectric tensor can
be understood as a tensor for the relative permittivity of the plasma. The term P
describes the conductivity along the external magnetic field. The term S describes
the conductivity transverse to the external magnetic field and along the electric field.
The term D describes the conductivity to the direction of E×B0. The modes can
be further divided into a left-handed mode and a right-handed mode, S = (R+L)/2
and D = (R− L)/2, respectively,

R = 1−
∑
s

ω2
ps

ω2

(
ω

ω + ωcs

)
, L = 1−

∑
s

ω2
ps

ω2

(
ω

ω − ωcs

)
. (25)

The homogeneous wave Eq. (12) together with the dielectric tensor (23) give the
wave equation in matrix form

S − n2cos2θ −iD n2cosθ sin θ
iD S − n2 0

n2 cos θ sin θ 0 P − n2 sin2 θ



Ex

Ey

Ez

 = 0, (26)

where θ is the angle between the external magnetic field and the direction of the
propagation of the wave. Non-trivial solutions can be found when the determinant
of the matrix is zero, which leads to dispersion equation

An4 −Bn2 +RLP = 0, (27)

where

A = S sin2 θ + P cos2 θ, B = RL sin2 θ + PS(1 + cos2 θ). (28)

Solving for the angle θ from Eq. (27) reveals a different form of the dispersion relation

tan2 θ = −P (n2 −R)(n2 − L)
(Sn2 −RL)(n2 − P ) . (29)

For an EM-wave propagating in isotropic plasma, the dispersion relation did
not depend on the direction of the propagation. In magnetized plasma differently
polarized waves may only travel in certain directions. For a nonmagnetized plasma,
cut-off occurs when the refractive index n = 0. In addition to multiple cut-off
frequencies in a magnetized plasma, resonances occur when n→∞. At resonance
frequency the incident wave is damped and plasma receives the energy of the wave.
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2.5 Propagation of extraordinary and ordinary modes

For waves that travel perpendicular to the external magnetic field at an angle θ = π/2,
the dispersion relation Eq. (29) approaches infinity as the angle θ → π/2 due to the
tangent function

tan2 θ = −P (n2 −R)(n2 − L)
(Sn2 −RL)(n2 − P ) →∞, (30)

which has solutions when the denominator is zero

n2 = P n2 = RL

S
. (31)

The dispersion relation for the ordinary mode (O-mode) emerges from the solution
n2 = P . By inserting the definition of P from Eq. (24) and with the assumption
ωpi � ωpe

n2 = 1−
∑
s

ω2
ps

ω2 ≈ 1−
ω2
pe

ω2 , (32)

which is equal to the dispersion of the nonmagnetized plasma. The wave equation
Eq. (26) is simplified to 

S −iD 0
iD S − P 0
0 0 0



Ex

Ey

Ez

 = 0, (33)

which has an eigenvector E = (0, 0, Ez). For an ordinary mode wave, the electric
field is parallel to the external magnetic field, which therefore has no effect on the
propagation of the wave.

The solution n2 = RL/S of Eq. (30) leads to extraordinary waves, which obey
the dispersion relation [2]

n2 = 1−
ω2
pe

ω2
ω2 − ω2

pe

ω2 − (ω2
pe + ω2

ce)
. (34)

The extraordinary mode (X-mode) has two cut-off frequencies and resonance
frequencies. In this assignment the focus lies on the upper X-mode. The polarization
of the X-mode can be derived from the wave equation Eq. (26). The resulting
eigenvector E = ( iD

S
E0, E0, 0) shows that the electric field of the X-mode is elliptically

polarized perpendicular to the external magnetic field and the magnetic field of the
wave is parallel to the external magnetic field.

The dispersion relations for O-mode and X-mode are shown in Fig. 2. The
theoretical dispersion for the X-mode is calculated by solving Eq. (34) for ω. Two
possible roots exist

ω2 =
k2c2 + 2ω2

pe + ω2
ce

2 ±

√
(k2c2 + 2ω2

pe + ω2
ce)2 − 4(ω2

pe + ω2
ce)(k2c2 + ω4

pe)
2 , (35)
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k

ω
X,L=0

ω
pe

ω
X,R=0

X-mode       

O-mode

X-mode

Figure 2: The analytical solution of the dispersion of O-mode given by Eq. (32). The dispersion
of the upper X-mode and the lower X-mode are given by Eq. (35). The cut-off frequencies of the
X-mode mode waves can be found by setting n2 = 0 in Eq. (34).

where the positive root represents the upper X-mode, and the negative root represents
the lower X-mode, both shown in Fig. 2.

2.6 Absorbing boundary

Limited memory provides a challenge for all numerical simulations. Due to the finite
size of the simulation region, the boundaries are in a critical role in the realization
of the simulation. Especially for the simulation of EM-waves, where in a timescales
relevant for the particles of the simulation, the wave has already traversed through
the entire simulation region. Ideally waves that reach the edge of the simulation
region will disappear from the simulation grid, identical to waves travelling in free
space.

For an electromagnetic wave to pass through a boundary without reflection, the
electric field components and the derivatives of the electric field components have to
be continuous at the boundary. The following derivation of the absorbing boundary
conditions closely follows the derivation presented in article [5]. Each component of
the electric field independently satisfies the three-dimensional scalar wave equation
[6]

(∂2
x + ∂2

y + ∂2
z − c−2∂2

t )E = 0, (36)

where c = c0/
√
εµ is the speed of light in a medium. Solutions of the wave equation

depend on place and time as E = E(k · r + ωt). The frequency of the wave can
be defined with the wave vector as ω = kv, where v is the velocity of the wave. The
electric field can be modified to be
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E(k · r + ωt) = E
(
ω

v
k̂ · r + ωt

)
, (37)

where the unit wave vector k̂ is parallel to the velocity of the wave k̂ ‖ v, which allows
expressing the components of the unit wave vector as kx = vx/v, and transforming
the argument into

E
(
ω
(
vx
v2x+ vy

v2y + vz
v2 z + t

))
. (38)

With the assumption of constant frequency ω, the argument of the electric field is
simplified to

E (sxx+ syy + szz + t) , (39)

where the sx = vx/v
2 denotes an inverse velocity component. The inverse velocity

components satisfy s2
x + s2

y + s2
z = c−2. A plane wave traversing to the direction of

decreasing x can be modified to

E = E(t+ (c−2 − s2
y − s2

z)1/2x+ syy + szz)). (40)

The first order boundary condition that produces zero reflection coefficient at the
boundary located at x = 0 is[5]

(∂x − sx∂t)E|x=0 = (∂x − c−1(1− (csy)2 − (csz)2)1/2∂t)E|x=0 = 0. (41)

The square root of Eq. (41) can be approximated as

(1− (csy)2 − (csz)2)1/2) = 1 +O((csy)2 + (csz)2), (42)

which results in the first order approximation

(∂x − c−1∂t)E|x=0 = 0. (43)

In its simplest form, the first order boundary condition simply states that the for a
wave that approaches the boundary parallel to the normal of the surface, the change
of the wave in time has to equal the change in space. A more precise approximation
can be achieved if the square root is written as

(1− (csy)2 − (csz)2)1/2) = 1− 1
2((csy)2 + (csz)2 +O(((csy)2 + (csz)2)2), (44)

which results in a second order approximation

(c−1∂2
xt − c−2∂2

t + 1
2(∂2

y + ∂2
z ))E|x=0 = 0. (45)

The second order approximation is also able to absorb a wave that propagates parallel
to the border, by incorporating the derivatives of y and z.



11

2.7 Replacing particles with relative permittivity

Currently the MULTI-em simulation is fully kinetic, which is computationally ex-
pensive and limits the possible targets for the simulation. The effect of the particle
currents on the propagation of the EM-waves enters the simulation in Eq. (61) in
the current term. If this current term could be replaced with an analytical formula,
particles could be left out of the simulation.

For isotropic plasma, the current is already given as a function of the electric
field and conductivity tensor in Eq. (15). The imaginary part can be gotten rid of
by assuming harmonic time dependencies into a another direction −iωE = ∂E/∂t
and remembering the definition of plasma frequency ω2

p = ne2/mε0 the current can
be denoted with

J = ie2ne
meω

E = ε0
ω2
pe

ω2
∂E
∂t
. (46)

By replacing the current term in the amperé’s law used to calculate the propagation
of the electric field in the simulation Eq. (61)

∂E
∂t

= 1
ε0
∇×H− J

ε0
= 1
ε0
∇×H−

ω2
pe

ω2
∂E
∂t
, (47)

which can be simplified by taking the electric field derivative as a common divisor

∂E
∂t

=
(

1−
ω2
pe

ω2

)−1 1
ε0
∇×H. (48)

The factor can be denoted as a relative permittivity εr = (1− ω2
pe/ω

2) and ε = εrε0,
which results in a final simple formulation for the derivative of the electric field

∂E
∂t

= 1
ε
∇×H, (49)

Without external magnetic field, when the frequency of the EM-wave is close to
the plasma frequency, the wave is transient and unable to propagate. The Eq. (49)
approaches infinity close to the plasma frequency, which makes the application of
the equations to the MULTI-em simulation more complicated.

For plasma with an external magnetic field, the current can be calculated from
the electric field with a second order conductivity tensor. The current term is shown
in Eq. (22). The effect of the ions on the current is neglected for now and can be
introduced later with a simple addition. The choice of the direction of the external
magnetic field is arbitrary, here the magnetic field is in z-direction B0 = B0ẑ. The
brackets can be opened to produce three equations for the components of the current



12

Jx =ε0ω
2
pe

( −iω
ω2
ce − ω2Ex + ωce

ω2
ce − ω2Ey

)
(50)

Jy =ε0ω
2
pe

( −ωce
ω2
ce − ω2Ex + −iω

ω2
ce − ω2Ey

)
(51)

Jz =ε0ω
2
pe

(
i

ω
Ez

)
. (52)

The assumption of harmonic time-dependencies −iωE = ∂E/∂t, can be used to
transform the imaginary parts into to a form that easier to implement

Jx =ε0

( ω2
pe

ω2
ce − ω2

∂Ex
∂t

+ ωce
ω2
ce − ω2Ey

)
(53)

Jy =ε0

( ω2
pe

ω2
ce − ω2

∂Ey
∂t
− ωce
ω2
ce − ω2Ex

)
(54)

Jz =− ε0

(ω2
pe

ω2
∂Ez
∂t

)
. (55)

The electric field for Ex according to Eq. (61) is now

∂Ex
∂t

= 1
ε0

(
∂Hz

∂y
− ∂Hy

∂z

)
−
( ω2

pe

ω2
ce − ω2

∂Ex
∂t

+ ωce
ω2
ce − ω2Ey

)
, (56)

where the electric field time derivative can be taken as a common denominator, which
results in

∂Ex
∂t

=
(

1 +
ω2
pe

ω2
ce − ω2

)−1 1
ε0

(
∂Hz

∂y
− ∂Hy

∂z

)
−
(

ωce
ω2
ce − ω2Ey

)
(57)

∂Ey
∂t

=
(

1 +
ω2
pe

ω2
ce − ω2

)−1 1
ε0

(
∂Hx

∂z
− ∂Hz

∂x

)
+
(

ωce
ω2
ce − ω2Ex

)
(58)

∂Ez
∂t

=
(

1−
ω2
pe

ω2

)−1 1
ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
(59)

In the absence of an external magnetic field ωce = 0, which reduces Eq. (57)
to the same as in the isotropic case. These solutions assume that there in fact
exists a propagating wave with a certain frequency. Different approaches and the
implementation of dispersive media in a FDTD-simulation are described by Taflove
[7], Luebbers in [8], and [9].
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3 Research material and methods

3.1 Description of the MULTI-em simulation

The simulation platform used is based on a hybrid plasma simulation platform
that has been developed to study planetary plasma environments. The addition of
electromagnetic waves was done by Pohjola and Kallio [10] to create a fully–kinetic
electromagnetic simulation–platform.

The simulation treats both electrons and ions as fully kinetic particles. The
particles are implemented as macroparticles, which represent millions of actual
particles. The simulation uses a FDTD-method to propagate both electric and
magnetic fields. The magnetic field is propagated in time by using the Faraday’s law
Eq. (7)

∂B
∂t

= −∇× E. (60)

The electric field is propagated in time by using the Ampère-Maxwell’s law Eq. (8)

∂E
∂t

= 1
ε0
∇×H− J

ε0
, (61)

where the electric current is calculated from the bulk velocity of ions and electrons,
us and ue, respectively

J =
∑
s

(qsnsus)− eneue. (62)

Macroparticles are accelerated by the Lorentz force Eq. (6). The bulk velocities us
and ue needed in Eq. (62) are derived by accumulating particles into a cell (see [10]
for details). If the the Gauss law for the electric field Eq. (9) and the equation of
continuity for charge are satisfied initially

∇ · J = −∂ρ/∂t. (63)

Taking the divergence of Eq. (61)

∂(∇ · E− ρε0)/∂t = 0. (64)

Eq. (64) implies that if the Gauss’ law (Eq. (9) ) is fulfilled initially, it will be filled
during the simulation, without the need to solve Poisson’s equation.

The simulation region consists of cubic grid cells that are surrounded by so called
ghost cells, which are used for the calculation of the electric and magnetic fields
at the edge of the grid. The electric field values are stored at the cell edges and
the magnetic field values at the cell faces, similar to a Yee-type grid shown in Fig.
4. It is possible that the propagation of particles takes them outside the actual
simulation region. Currently these particles can either be absorbed or reflected by the
boundaries. With a low number of macroparticles in a cell, these escaping particles
provide an significant source of instability, especially with an external static magnetic
field.
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Each grid cell is described with three indexes i, j, and k. The ghost cells correspond
to indeces i = 0, i = nx− 1, j = 0, j = ny − 1, k = 0, k = nz − 1, where nx, ny, and
nz are the numbers of cells in x, y, andz directions, respectively. Only cell edges and
faces of actual grid cells are initialized and reference to an edge or a face outside
the actual simulation area will result in a segmentation fault. The edges, cells, and
nodes for each cell are referenced through a straight-forward indexing scheme. For
each cell, there is a total number of 12 edges.

3.2 Finite-difference time-domain method

Finite-difference time-domain (FDTD) method is one of most frequently used methods
in computational electrodynamics. The method was first introduced by Yee in 1966
[3]. The FDTD method does not require solving complicated linear algebra and the
error sources are well understood. FDTD method is memory intensive to a point [7].

The FDTD method uses a Yee-type grid shown in Fig. 4. The grid consists of
cells where the magnetic field values are saved on the cell faces and electric field
values are saved on the cell edges. Maxwell’s equations

∂B
∂t

=−∇× E (65)

µ0ε0
∂E
∂t

=∇×B, (66)

allow the calculation of the magnetic field on the face from the electric field values
on the edge of the corresponding face. The electric field is calculated at integer
time-steps and the magnetic fields are calculated at half-integer time-steps. With a
finite-difference approximation the electric and magnetic field x-components are [5]

Hn+1/2
x (i, j + 1/2, k + 1/2) = Hn−1/2

x (i, j + 1/2, k + 1/2)

− δt

µ0δ
(En

z (i, j + 1, k + 1/2)− En
z (i, j, k + 1/2)

−En
y (i, j + 1, k + 1) + En

y (i, j + 1/2, k)),

(67)

En+1
x (i+ 1/2, j, k) = En

x (i+ 1/2, j, k)

+ δt

µ0δ
(Hn+1/2

z (i+ 1/2, j + 1/2, k)−Hn+1/2
z (i+ 1/2, j − 1/2, k)

−Hn+1/2
y (i+ 1/2, j, k1/2) +Hn+1/2

y (i+ 1/2, j, k − 1/2)),

(68)

where δt is the time step of the simulation and δ the length of grid cell edge. The
y and z-components are calculated similarly. Calculating new electric(magnetic)
field values only requires the value of the previous field value, and the value of
magnetic(electric) field value at previous time-step, which allows the simulation to
update all the electric(magnetic) field values in parallel.
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(i,j,k)
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Ez

Ex

By

BzBz

x

y

z (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

Figure 4: The position of the field components in a Yee-type grid. The magnetic field By(i+ 1, j+
1/2, k + 1/2) is calculated from the electric field components on the border of the face marked in
red. The electric field component Ex(i+ 1, j + 1/2, k) is calculated from the four nearest magnetic
field components from the faces marked in blue.

3.3 Absorbing boundary conditions for FDTD

There are two popular possibilities of implementing a boundary for FDTD-simulation
that absorbs EM-waves at the boundary. The continuous boundary conditions,
where the electric field is calculated at the edge of the grid to create a seemingly
continuous wave, and the perfectly matched layer (PML), where a boundary layer
with a matching impedance is added. The approach with PML has gained popularity
in recent years, but the continuous boundaries are easier to implement, although less
precise. PML boundary is more complicated to implement for plasma simulations
because of the non-scalar conductivity of magnetized plasma. This section describes
the practical implementation of the continuous boundary conditions for a FDTD-
simulation. The absorbing boundary conditions for the numerical simulation of waves
presented by Enquist and Majda [4] were adapted to the simulation of EM-waves
using FDTD-method by Mur [5].

The absorbing boundary conditions are derived analytically in Section 2.6. How-
ever, the discrete simulation grid provides an additional difficulty of the realisation of
such boundary conditions. For a Yee-type grid shown in Fig. 4, magnetic field com-
ponents can be evaluated on the edge of the grid from the electric field components
on the edge. However, the calculation of the electric field components would require
magnetic field components that are located outside of the simulation grid. The idea
of these absorbing boundary conditions is to calculate the electric field component
at the edge of the grid in such a way that the wave seems to be continuous at the
boundary, demonstrated in Fig. 5.
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i-1 i

𝛿

Figure 5: Visualization of the absorbing boundary conditions. The 1D-wave (blue) arrives at the
boundary (red) on a discrete grid. The amplitude of the wave is only known at the grid points. The
spatial derivative is calculated at a time step t at grid points i− 1 and i. The time derivative is then
calculated at grid point i− 1 at time steps t and t+ ∆t. The amplitude of the wave corresponding
to a wave without the boundary is estimated with these derivatives at grid point i at time step
t+ ∆t.

In the simulation, magnetic–field values are replicated to ghost cells surrounding
the actual grid to typical calculation of electric field at the edge. These electric field
values at the edge of the grid are replaced by electric field values of an absorbing
boundary. The analytical solution of a first approximation Eq. (43) for an electric
field at the edge of the grid absorbs the perpendicular component of a wave that
arrives to the boundary. The analytical solution can be implemented with a finite-
difference approximation. Here the absorbing boundary is calculated for a component
En+1
z (0, j, k + 1/2), which denotes electric-field component in z-direction on the ’left’

edge of a simulation box at a time-step n+ 1. Indexes j and k are dropped on the
following derivation of the first order absorbing boundary. The finite-difference of
the electric field at the edge is

1
δ

(En+1
z (1)− En+1

z (0)) + 1
δ

(En
z (1)− En

z (0))

− 1
cδt

(En+1
z (0)− En

z (0))− 1
cδt

(En+1
z (1)− En

z (1)) = 0,
(69)

where spacial derivatives and time-derivatives are calculated for grid points (0, j, k +
1/2) and (1, j, k + 1/2) and for times n and n + 1. The electric field En+1

z can be
solved from Eq. (69)
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En+1
z (0) = En

z (1) + cδt− δ
cδt+ δ

(En+1
z (1)− En

z (0)), (70)

where the term En+1
z (1) requires calculation of of the electric field everywhere else

except at the boundary.
The second order approximation for an absorbing boundary can be derived from

Eq. (45). The derivation is not shown here, but follows the same ideas as the
derivation of the first order absorbing boundary. This time the indexes j and k
cannot be forgotten. The electric field En+1

z (i, j, k + 1/2) is solved

En+1
z (0, j, k + 1/2) =− En−1

z (1, j, k + 1/2)

+cδt− δ
cδt+ δ

(En+1
z (1, j, k + 1/2) + En−1

z (0, j, k + 1/2))

+ 2δ
cδt+ δ

(En
z (0, j, k + 1/2) + En

z (1, j, k + 1/2))

+ (cδt)2

2δ(cδt+ δ)(En
z (0, j + 1, k + 1/2)− 2En

z (0, j, k + 1/2)

+ En
z (0, j − 1, k + 1/2) + En

z (1, j + 1, k + 1/2)
− 2En

z (1, j, k + 1/2) + En
z (1, j − 1, k + 1/2)

+ En
z (0, j, k + 3/2)− 2En

z (0, j, k + 1/2)
+ En

z (0, j, k − 1/2) + En
z (1, j, k + 3/2)

− 2En
z (1, j, k + 1/2) + En

z (1, j, k − 1/2)).

(71)

The electric field components needed to calculate the second order approximation
are shown in Fig. 6. The second order approximation requires electric-field compo-
nents from a time-step n− 1. The implementation of the second order approximation
is more complex because of needed adjacent components in all directions. These
components do not exist at the edge of the simulation box. However, the components
outside of the simulation box can be set to zero. This simply implies that no wave
approaches the box from outside.

3.4 Notable differences compared to previous versions

In the previous version of MULTI-em model, electromagnetic waves were produced
by either a varying magnetic field or a varying electric field. Using varying magnetic
fields as a wave source is not very intuitive and creates problems, when the simulation
needs a constant magnetic field. The varying magnetic fields were created through
the constant magnetic field functions, which are also used in particle propagation.
During this assignment it was decided that all electromagnetic waves will be created
by using a varying electric field source.

Previously the electric field values at the source location were overwritten by the
forced source field. Therefore, waves travelling towards the source location were not
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able to pass the source.This is problematic, especially with plane wave sources that
have equal width with the simulation box and thus prevent reflected waves from
escaping the simulation box on the side of the source. The problem was alleviated
by adding a different variable for a forced electric field source. The change of the
magnetic field is calculated as the curl of the normal electric field and the source
electric field

∂B
∂t

= −∇× (E + Esource). (72)

Multiple new electromagnetic wave sources were added, most notable being an
elliptically polarized point source called "sinEPolarized", which takes phase difference
between Ey and Ez as a parameter.

The electric field was previously interpolated from cell edges to cell nodes for the
propagation of the magnetic field. The magnetic field is now calculated directly from
the electric field values at the edges of the cells. Previously, the electric field was
interpolated from cell nodes to cell center for particle propagation. Now, the electric
field is interpolated directly from the cell edges to the cell center. The electric field x-
component at the cell center is calculated as the mean of the electric field values of the
cell’s four edges in x-direction. In total, all 12 cell edges are used for the interpolation
of every electric field calThe ttothecellcenter.y and z-comcomponenponents of the
electric field are calculated in the same manner, The cell edges now have a location
coordinate and resistivity η, which can be used to implement relative permittivity
according to a predetermined resistivity profile.
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Figure 3: Illustration of a single simulation time step. The green, red, and blue color boxes
correspond to functions that are connected to particles, the magnetic field, or the electric field,
respectively. The upper part of the figure represents the higher level structure of one time step.
The steps that propagate the fields, calculate new particle velocities, and finalize the time step are
opened in more detail. Some of the more complex operations have a further description in their own
boxes. Boxes below the Fieldpropagate correspond to operations that are needed to propagate the
electric and magnetic fields one time step forward. Arrows starting from these operations represent
a function call required to perform that operation. Most of the boxes have a function call with a
similar name in the actual simulation. EC, FC, and CN are short hands for different interpolations
(see abbreviations).
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Figure 6: The illustration of the Electric field components that have an effect on the boundary
conditions. The Electric field calculated at the edge (blue line) is calculated from all other edges.
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4 Results

4.1 Absorbing boundary conditions

To be able to calculate the finite-differences of the electric field components at the
edge of the grid, the electric field components of the previous time-step have to be
saved. The second approximation of the absorbing boundary conditions requires
saving the electric field values at two previous time-steps.

The second order boundary conditions are implemented for the simulation. A
final implementation requires the addition of the cell edges to the ghost cells for
the calculation of the electric field components at the edge of the simulation box.
Currently the components at the edge of the simulation are calculated using the
first order approximation for the absorbing boundaries, which only absorb wave that
propagate perpendicular to the boundary. The contour lines of the electric field of
a a point source Ez located at {x, y} = {−100, 100} km are shown in Fig. 7. For
reference, the countour lines without absorbing boundaries are shown in Fig. A1.

The second order boundary conditions retain the waveform of a point source
located close the the corner of the simulation box. The largest differences from the
analytical radiation pattern, which is circular, can be seen close to the edges of the
simulation box.

Figure 7: The contour lines of the EM-wave produced by a point source EThez with f = 2000
Hz located at {x, y} = {−100, 100} km shown at a time t = 0.0023 s. size of the simulation box is
400km× 400km× 100km. Electric field components at all edges are calculated using the second
order approximation Eq. (71)

4.2 Dispersion in nonmagnetized plasma

In plasma, the wavelength and frequency are connected through a nonlinear dispersion
relation. In the simulation, the propagation of EM-waves is not artificially restricted.
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Figure 8: A test of the propagation of a plane wave in nonmagnetized plasma. The color gives
the magnitude of the electric field y-component in V/m. A plane wave source of is located at x = 0
with a frequency of f = 2500 Hz. The entire simulation box if filled with a uniform plasma with
plasma frequency of fpe = 1300 Hz. The size of the simulation box is 1000 km×100 km×100 km.

The propagation of the wave is only affected through the current term in the Amperè’s
law Eq. (8), which is calculated from the movement of the macroparticles. The
appearance of dispersive characteristics in this fully kinetic simulation is a solid
validation for the simulation platform.

The dispersion in isotropic plasma is studied with a plane wave. The plane wave
is produced by manually changing the Ey components of the electric field at the
plane x = 0, which results in a magnetic field component Bz. The width of a single
cell is 10 km and the size of the entire grid is 1000 × 100 × 100 km. The electric
field source-components are varied with frequencies from 1200 Hz to 2500 Hz. The
amplitude of electric–field source is 0.01 V/m. The amplitude of the plane–wave
source has no effect on the waveform on tested amplitude range of E = 1 ·10−7−1 ·100

V/m. The wavelength of the highest frequency f = 2500 Hz in vacuum is 120 km,
which results in 12 cells for each wavelength at minimum. The simulation time-step
δt = 1 · 10−5 is selected to fill the Courant stability-condition for a FDTD simulation
[7]. The simulation configuration is shown in Fig. 8

Electric and magnetic field values measured at x = 500 km are shown in Fig.
9. The oscillation reaches a steady state after an initial phase. The possible
reflections from the back wall of the simulation box return to the measurement point
at t = 0.0104 s at the earliest. The small decrease in the amplitude of the electric
field near t = 0.014 s could be caused by reflections of the initial wave. Without
an external magnetic field, electric field components Ex and Ez are are unexpected
and could be attributed to the limited macroparticle count. With a low number of
macroparticles local variations in the electron density are expected and may produce
local electric field gradients, currents, and magnetic fields.

The accurate frequency of the EM-wave in plasma is calculated from the time-series
of the fields, shown in Fig. 9. The frequency amplitude spectrum is calculated with
a Fourier transform of the time-series of the electric field component Ey. Amplitude
spectrum for a source frequency 1700 Hz is shown in Fig. 10a. A longer time-series
would produce a more accurate frequency spectrum, but longer simulation runs face
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Figure 9: The time-series of electric and magnetic field component amplitudes of a plane wave
source in isotropic plasma. The source electric field has magnitude of Ey = 0.01 V/m and a
frequency of 1700 Hz. The field values are measured at x = 500 km.
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Figure 11: The normalized amplitude spectrum of the electric field as a function of the extracted
wave vector k, compared to the theoretical dispersion in cold nonmagnetized plasma. The plasma
frequency is fpe = 1300 Hz which corresponds to an angular cut-off frequency of ωpe = 0.82·104 rad/s.
Amplitude spectrum is obtained with a fast Fourier transform in Matlab. See Wiki-page for the
analysis code [11].

problems of instability.
The value of the wave vector k = 2π/λ is obtained from a sinusoidal least-square

fit Ey = A · sin(kx+ φ) to the amplitudes of the electric field component Ey between
200 < x < 875 km at one moment of time t = 1200 s. The least-square fit is shown in
Fig. 10b. The frequency amplitude spectrum and value of the corresponding value of
k are calculated for multiple source frequencies from 1200 Hz to 2500 Hz. The final
result is compiled into a single dispersion relation shown in Fig. 11. The frequency
amplitude spectra are obtained from a time-series which ends at t = 0.02 s, only half
of which is shown in Fig. 9.

The extracted dispersion relation is the compared to the theoretic dispersion
calculated using the Eq. (20). The simulation is able to correctly predict the cut-off
frequency for an EM-wave in isotropic plasma. Figure 11 demostrates that the
simulation is able to describe the nonlinear dispersion of electromagnetic waves
in isotropic plasma and to describe the propagation of electromagnetic waves in a
nonmagnetized collisionless cold plasma.
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Figure 12: A test of the propagation of the O-wave. The color gives the amplitude of the electric
field z-component in V/m. The wave is produced by an oscillating point source at (x, y, z) = (0, 0, 0).
The wave source has an electric field amplitude of Ez = 1 ·10−7 V/m and a frequency of f = 2500 Hz.
The external magnetic field Bz = 40 nT is in z-direction. The region x > 200 is filled with a
uniform plasma with a plasma frequency of fpe = 1300 Hz. The size of the simulation box is 900
km×200 km×200 km. All boundaries have absorbing boundary conditions for electric fields.

4.3 Dispersion of the O-mode

The O-mode wave has an electric field parallel to the external magnetic field. Charged
particles in the plasma oscillate along the external magnetic field, which should
therefore not affect the propagation of the wave. For this exact reason, the dispersion
of the O-mode is equal to the dispersion of a wave in nonmagnetized plasma Eq. (20).
The wave is produced by varying an electric field component Ez on a single edge at
the origin (0, 0, 0). An external magnetic field is added to the simulation through a
function called "constantMagneticField". The constant magnetic field is ignored in
the propagation of the electric and magnetic fields and only affects the propagation of
particles. The constant external magnetic field in z-direction Bz0 = 40 nT is applied
over the entire simulation box. A uniform plasma region with plasma frequency
fpe = 1300 Hz fills the region x ≥ 200 km. The resulting upper X-mode cut-off
frequency is fX,R=0 = 2280 Hz, lower cut-off frequency is fX,L=0 = 1160 Hz and
the upper resonance frequency f = 1720 Hz. The plasma is simulated with 200
macroparticles in a cell.

A single simulation run lasts for tmax = 0.02 s, and the amplitude of the wave
number k is fitted at a time t = 0.007 s. The time-series for electric and magnetic fields
for multiple frequencies are shown in Figs. A2, A3, A4, and A5. Above the plasma
frequency the waveform is clear and close to the source frequency. As the frequency
of the incoming wave approaches the X-mode cut-off frequency, the amplitude of high
frequency noise increases significantly. At one of the lowest simulated frequencies for
the O-mode at f = 1600 Hz, the incoming incident wave is quickly damped and is
not visible at the end stages of the simulation.

The addition of an external magnetic field has a negative effect on the stability of
the simulation. As noted also for the field components in the isotropic simulations,
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Figure 13: The normalized amplitude spectrum for an O-wave as a function of the extracted k
compared to the theoretical dispersion relation of O-mode for cold magnetized plasma. The plasma
frequency is fpe = 1300 Hz which corresponds to an angular cut-off frequency of ωpe = 0.82·104 rad/s.
The simulated O-mode cut-off is higher at approximately 1750 Hz. Amplitude spectrum is obtained
with a fast Fourier transform in Matlab. See Wiki-page for the analysis code [11].

unexpected electric and magnetic field components can be seen in Fig. 9. An external
magnetic field amplifies the effect of these other components by redirecting particles.
The field strengths of a point source are smaller at the edges of the simulation box
which alleviates the occurrence of these instabilities. Creating the field with a point
source also allows using the absorbing boundary conditions on all edges. Dispersions
of the O-mode and X-mode are simulated with a point source.

Largest simulation instabilities arise from the ends of the simulation box. Absorb-
ing boundary conditions in the end of the box result in a situation where particles
with same charge are absorbed at the end of the box. This creates a local electric–field
gradient, which increases the number of escaping particles over time. The instabilities
are attributed to the escaping particles. The electrons do not traverse large distances
in comparison the cell size. A larger macroparticle count should decrease the effect of
the escaping particles on the total electric field. The effect of increased macroparticle
count on the electric fields close to the edge of the simulation box is demonstrated
for 40, 120, and 200 macroparticles per cell, shown in Figs. A7, A9, and A11. With
a larger number of macroparticles, the absorbtion of a single macroparticle at the
end of the box is less significant.

The dispersion relation of the O-mode wave is shown in Fig. 13. The dispersion
relation is composed of multiple different simulations similar to the isotropic case.
The simulated cut-off frequency of the O-mode is at an frequency f = 1780 Hz. The
predicted cut-off frequency is the plasma frequency fpe = 1300 Hz. The macroparticle
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count in a cell has little to no effect on the cut-off frequency of the O-mode. This
simulated cut-off is close to the upper hybrid resonance frequency of the X-mode. It
is important to remember that the plane wave approximation in the derivation of the
theoretical dispersion relation is not filled here. The significance of this difference is
not investigated further in this assignment.

4.4 Dispersion of upper X-mode

The addition of an external magnetic field introduces new propagating wave modes.
When the electric field of the EM-wave is perpendicular to the magnetic field, the
charged particles begin oscillating also in the direction of the propagation of the
wave and the electric field is expected to be elliptically polarized.

The simulation configuration is shown in Figs. 14a and 14b. A uniform plasma
region with plasma frequency f = 1300 Hz begins at x = 200 km. An external
magnetic field Bz = 40 nT is applied over the entire simulation box. The resulting
upper X-mode cut-off frequency is fX,R=0 = 2280 Hz, lower cut-off frequency is
fX,L=0 = 1160 Hz and the upper resonance frequency f = 1720 Hz. To simulate
the dispersion of X-mode, a point source with varying electric field Ey is located at
(0, 0, 0). The size of the simulation box is 900 km×200 km×200 km. The addition
of external magnetic field introduces new reflections that were not visible in the
simulations with nonmagnetized plasma. The resulting asymmetric electric field are
clearly visible in Fig. 14b.

The electric and magnetic field time-series is shown in Fig. 15. Even though the
original electromagnetic wave has only transverse electric and magnetic fields, upon
entering the plasma, the Ex components emerge. This is can be associated with the
movement of electrons in x-direction due to the external magnetic field.

In the simulations with external magnetic field, the wave source is not located
inside the plasma, because the simulation runs were unstable with a source inside the
plasma. A possible reason for this instability could be the acceleration of particles
at the source location. The electric field components of Ey have different signs
on different sides of the source and particles at the source location experience are
not accelerated in a predictable fashion. However, the wave source outside the
plasma creates new difficulties with possible shock waves. The electromagnetic waves
propagating in the plasma require additional time to reach a stable configuration.

The dispersion of the X-mode is calculated similar to the dispersion relation of
nonmagnetized plasma. The frequency amplitude spectrum is obtained as a Fourier
transform of the time-series of the electric field component Ey. The corresponding
wave number k is extracted by fitting the value of k to Ey at time t = 0.013 s. The
simulation of the upper X-mode stay stable for a longer time than the simulation
of the O-mode. This makes obtaining a cleaner frequency spectrum possible. Even
though the electric fields look asymmetric, the extracted dispersion relations are
close to the theoretical dispersion of the X-mode. The simulated dispersion relation
is shown in Fig. 16.

The dispersion of the upper X-mode displays the same behaviour as the theoretic
prediction by Eq. (35). With point source, the frequency spectrum is sharp. As a
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(a) The propagation of the wave in y = 0 plane.

(b) The propagation of the wave in z = 0 plane.

Figure 14: A test of the propagation of X-wave in magnetized plasma. The asymmetry of the
X-waves is demonstrated by showing the waveform in two different planes. Color gives the amplitude
of electric field component Ey. The wave is produced by varying the electric field value on a single
edge at (x, y, z) = (0, 0, 0) with an amplitude of Ey = 1 · 10−7 V/m. Here, the source frequency
is f = 2500 Hz. The magnitude of the external magnetic field is Bz = 40 nT. A uniform–plasma
region with plasma frequency fpe = 1300 Hz fills the region x > 200 km. The size of the simulation
box is 900 km×200 km×200 km.
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Figure 15: Time-series of the electric and magnetic field components in a test of the propagation
of the X-mode. The simulation configuration is shown in Fig. 14b. The EM-wave is produced by
an electric field point source located at the origin with an amplitude of Ey = 1 · 10−7 V/m and a
frequency of f = 2500 Hz. The amplitude of the external magnetic field is Bz = 40 nT. The fields
are measured inside the plasma region at x = 600 km.
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Figure 16: The normalized amplitude spectrum for an O-wave as a function of the extracted k
compared to the theoretical dispersion relation of upper X-mode for cold magnetized plasma. The
plasma frequency is fpe = 1300 Hz and the upper cut-off frequency fX,R=0 = 2280 Hz= 1.4·104 rad/s.
The simulated upper X-mode cut-off is close to the theoretical cut-off frequency. The simulated
dispersion begins to deviate from the theoretical at higher frequencies. Amplitude spectrum is
obtained with a fast Fourier transform in Matlab. See Wiki-page for the analysis code [11].
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result of the fit for the value of k, the obtained values are smaller than predictions
made by the theory. The HYB-em seems to be able to correctly predict the nonlinear
dispersion of the upper X-mode, the simulated cut-off approaches the cut-off frequency
predicted by theory.

The simulation of the lower X-mode was not successful with the current version
of the simulation. At lower frequencies the a component of the plasma frequency
dominates the frequency spectrum. Also at lower frequencies, the simulation is not as
stable as with the higher frequencies. Below the upper X-mode cut-off frequency, it is
not possible to obtain a single frequency component from the measured time-series.
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5 Summary
This assignment gave an introduction to the fundamental properties of plasma, and
the phenomena that are connected to the propagation of an electromagnetic wave
in a nonmagnetized and magnetized plasma. The goal of this assignment was the
further validation of the HYB-em platform that is based on already validated HYB
simulation platform. This goal was approached by investigating the dispersion of
electromagnetic waves in different plasma environments. Along the way absorbing
boundary conditions were added for electromagnetic waves.

The addition of absorbing boundary conditions allowed a more precise investiga-
tion of electromagnetic waves than before. This allowed, for the first time, a reliable
investigation of dispersion of EM-waves in plasma with the HYB-em simulation.
The dispersion relation for nonmagnetized plasma is in a very good agreement with
the theoretical prediction. The dispersion for upper X-mode for magnetized plasma
resembles the theoretical prediction with some differences.

Further work includes investigation of the dispersion of the X-mode resonance
branch and the dispersion of waves that propagate parallel to the external magnetic
field. Important work is required in the reduction of reflections with the addition of
external magnetic field and the implementation of stable current boundary conditions.
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A Appendix A

A.1 Countour without absorbing boundary

Figure A1: The contour lines of the EM-wave produced by a point source Ez with f = 2000 Hz
located at {x, y} = {−100, 100} km shown at a time t = 0.0023 s. size of the simulation box is
400km× 400km× 100km.
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A.2 O-mode fields
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Figure A2: Amplitudes of electric and magnetic field components in a test of the propagation
of O-mode. The simulation configuration is shown in Fig. 12. Electric field point source with an
amplitude Ez = 1 · 10−7 V/m is located at x = 0. Amplitude of the external magnetic field is
Bz0 = 40 nT. The field amplitudes are measured inside the plasma region at x = 600 km for source
f = 2200 Hz. The plasma frequency is fpe = 1300 Hz.
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Figure A3: Amplitudes of electric and magnetic field components in a test of the propagation
of O-mode. The simulation configuration is shown in Fig. 12. Electric field point source with an
amplitude Ez = 1 · 10−7 V/m is located at x = 0. Amplitude of the external magnetic field is
Bz0 = 40 nT. The field amplitudes are measured inside the plasma region at x = 600 km for source
f = 2000 Hz. The plasma frequency is fpe = 1300 Hz.
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Figure A4: Amplitudes of electric and magnetic field components in a test of the propagation
of O-mode. The simulation configuration is shown in Fig. 12. Electric field point source with an
amplitude Ez = 1 · 10−7 V/m is located at x = 0. Amplitude of the external magnetic field is
Bz0 = 40 nT. The field amplitudes are measured inside the plasma region at x = 600 km for source
f = 1800 Hz. The plasma frequency is fpe = 1300 Hz.
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Figure A5: Amplitudes of electric and magnetic field components in a test of the propagation
of O-mode. The simulation configuration is shown in Fig. 12. Electric field point source with an
amplitude Ez = 1 · 10−7 V/m is located at x = 0. Amplitude of the external magnetic field is
Bz0 = 40 nT. The field amplitudes are measured inside the plasma region at x = 600 km for source
f = 1600 Hz. The plasma frequency is fpe = 1300 Hz.

A.3 Effect of macroparticle count on O-mode

Figure A6: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The simulation box size is −200 < x < 800 km
and −50 < y, z < 50 km. The plasma frequency is fpe = 1300 Hz.
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Figure A7: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electric and magnetic field values inside the plasma region at x = 780 km with 40 macroparticles
per cell.
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Figure A8: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electron velocities inside the plasma region at x = 780 km with 40 macroparticles per cell.
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Figure A9: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electric and magnetic field values inside the plasma region at x = 780 km with 120 macroparticles
per cell.
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Figure A10: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electron velocities inside the plasma region at x = 780 km with 120 macroparticles per cell.
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Figure A11: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electric and magnetic field values inside the plasma region at x = 780 km with 200 macroparticles
per cell.
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Figure A12: A plane wave source is located at x = 0 with a varying electric field Ez at f = 2200
Hz and an external magnetic field Bz0 = 40 nT. The plasma frequency is fpe = 1300 Hz. Measured
electron velocities inside the plasma region at x = 780 km with 200 macroparticles per cell.


