
Virtual Reality for Space Science Outreach and

Research

Markku Alho

October 23, 2017

Abstract

Virtual and augmented reality devices provide a novel, easily approach-
able and fast evolving medium for public outreach, and possibly a valu-
able tool for actual science. This report presents a short review of avail-
able equipment and software and presents the virtual reality demonstra-
tor built for Avaruusrekka 2017, a space science and technology outreach
event/expo truck in fall of 2017. Basic principles of the design of the
software are given, with critical consideration on user experience and us-
ability, including Visually Induced Motion Sickness. Improvements on the
state of the art are discussed, and further consideration is given to scien-
tific applications of a more advanced software. Some libraries and possible
designs for science software are discussed, and some guidelines on how to
generate visuals are noted at the end of the report.

1

Contents

1 Introduction 3

2 VR and AR solutions 3
2.1 State-of-the-Art consumer devices 3

2.1.1 HTC Vive . 3
2.1.2 Oculus Rift . 3
2.1.3 Microsoft Mixed Reality 3
2.1.4 PlayStation VR . 4
2.1.5 Cellphone-based . 4

2.2 Near future developments . 4
2.2.1 Microsoft Hololens . 4
2.2.2 Varjo . 4

2.3 Software . 5
2.3.1 Unity3D . 5
2.3.2 Unreal Engine . 5
2.3.3 Blender . 5
2.3.4 ParaView . 5

3 Floating in Space: VR for Space Outreach 5
3.1 Design choices . 5

3.1.1 Visuals . 6
3.1.2 Intermission: Visually Induced Motion Sickness and dis-

embodiment . 9
3.1.3 Movement and controls 10

3.2 Description of scenarios . 12
3.2.1 The Earth system . 12
3.2.2 67P/Churyumov-Gerasimenko 17
3.2.3 More scenarios . 17

3.3 Additional development . 18
3.3.1 Multi-platform compatibility and distribution 19

3.4 Expo usage and observations . 20
3.5 Outreach: conclusions . 20

4 Diving to Data: VR for Space Research 22

5 Software tips & tricks 23
5.1 ParaView to Unity . 23
5.2 Unity . 24

2

https://www.paraview.org/
https://unity3d.com/
https://unity3d.com/

1 Introduction

A short review of available virtual reality (VR) and augmented reality (AR) solu-
tions is presented at first, with some considerations on software implementation.
The reviews for hardware, software and software libraries are hardly exhaustive,
but rather try and serve to produce an overall picture of the possibilities. For
most part, the report focuses on applications as seen from the vantage point of
a modeler – specifically, one of space plasma physics, and therefore, references
to data usually concern 3-D simulations.

2 VR and AR solutions

2.1 State-of-the-Art consumer devices

The current state of the art is represented by two dedicated head mounted dis-
play (HMD) sets, the Vive and the Rift, and smartphone-based solutions like
the Samsung Gear VR. The dedicated HMDs, with peripherals, achieve sub-
millimeter location and corresponding orientation tracking in up to room-scale
environments, while the smartphone-based solutions, relying on internal smart-
phone positional trackers, tend to have less positional accuracy, but potentially
at a greatly reduced price.

2.1.1 HTC Vive

Developed by the Taiwanese smartphone manufacturer HTC, the Vive setup
consists of a head-mounted display (HMD), two base stations, two controllers
and a link box. The HMD and the controllers contain a set of photodetectors,
while the Lighthouse-dubbed base stations fill the tracking volume with struc-
tured light[1]. The HMD contains a 2160x1200 pixel display, split to 1080x1200
pixels per eye.

The system is supported on Linux since February 2017, and on Mac OS
X since summer 2017. Valve’s SteamVR software is used to run the system,
which can be interfaced through Valve’s OpenVR library. OpenVR is designed
to be independent of the actual equipment used, and Valve is as well working
in collaboration with the Open Source VR (OSVR) project.

2.1.2 Oculus Rift

The Oculus Rift system is quite comparable to the HTC Vive, especially after
publishing room-scale VR and dedicated controller components.

2.1.3 Microsoft Mixed Reality

Microsoft recently announced[2] its “Mixed Reality” platform for a VR-based
Windows operating system. Several hardware producers have introduced head-
mounted displays with controllers, at a lower price point than HTC or Oculus, so

3

far. Hardware specifications are similar to Vive and Rift, but with more empha-
sis on portability: the position tracking system is contained entirely within the
headsets, requiring no external setup. Reportedly, this produces slightly worse
tracking than with the competition. Additionally, these headsets have use dual
cameras for tracking that might be used to display the actual surroundings as
the backdrop of overlaid VR objects, but no such applications have been pre-
sented by Microsoft as of yet. The term “Mixed Reality” itself does not really
describe anything else than VR so far.

2.1.4 PlayStation VR

An additional VR peripheral to the console gaming system, at slightly a lower
resolution than the Vive and Rift.

2.1.5 Cellphone-based

Google Cardboard and Samsung Gear VR1 are examples of VR systems utilizing
a cheap (in the case of Google Cardboard, literally of made of cardboard) holder
for a high-resolution smartphone, the screen of which provides the VR system
its display and processing power. These systems generally fall behind dedicated
systems in processing power and graphics quality, motion tracking, field of view
and screen refresh rate, but, depending on the smartphone, may actually surpass
the number of pixels available in the dedicated systems. Some systems include
additional control peripherals.

Augmented reality software, in which the smartphone functions only as a
window into the virtual view (perhaps with the phone’s camera providing the
backdrop) are quite commonplace (see e.g. Pokemon Go), and with no addi-
tional peripherals required, could be a more accessible medium for wide deploy-
ment and distribution of outreach software.

2.2 Near future developments

2.2.1 Microsoft Hololens

An augmented reality peripheral by Microsoft. A transparent lens system and
built-in awareness of surroundings allow the system to render augmented reality
elements on top of the real world. Reportedly[3], the prototypes, as of yet, have
quite restricted field of view, seen as a serious detriment in the immersion.
However, the system has received praise for the concept besides the FoV issue.

2.2.2 Varjo

Varjo is a Finnish startup developing extremely high pixel density VR displays.
Their goal is to provide a display, in which high pixel-per-inch regions are ren-
dered on-demand as requested by eye tracking, with less resolution used at
peripheral areas. This would both mimic the operation of the human eye (that

1Developed in collaboration with Oculus

4

records high-resolution data from a relatively narrow field of view, with periph-
eral areas processed at a much lower fidelity) and enable contemporary graphics
processing units operate at the required huge (effective) resolution.

2.3 Software

This section lists different software solutions for developing VR and AR software.

2.3.1 Unity3D

Unity[4] is the game engine and game development software used in producing
the prototype and the demonstrator. The software is an industry standard, with
notable users (and products) including the Finnish studio Colossal Order (e.g.
Cities: Skylines) and Squad (Kerbal Space Program; including an education
version as well).

2.3.2 Unreal Engine

Unreal Engine[5] is another game engine and game development software. Un-
real Engine is another industry standard solution, famous for high-quality graph-
ics, and is somewhat comparable to Unity.

2.3.3 Blender

The open-source Blender[6] software, mostly used for 3-D modeling and art,
includes its own game engine and, nowadays, VR support.

2.3.4 ParaView

ParaView[7], an open source 3-D -visualization software, includes a rudimentary
VR branch, with little features besides displaying plots in VR.

3 Floating in Space: VR for Space Outreach

This section first introduces scenarios that have been considered and imple-
mented for the outreach demonstrator, and continues by describing the design
solutions, both tried and implemented. Henceforth, references to VR (develop-
ment) software will refer to the Unity software used to develop the demonstrator,
and references to VR gear will be of the HTC Vive system.

3.1 Design choices

This section explores the design of both the informative (and hopefully appeal-
ing) visuals and the user interface of the software.

5

https://unity3d.com/
https://www.unrealengine.com
https://unity3d.com/
https://www.blender.org/
https://www.paraview.org/
https://unity3d.com/

3.1.1 Visuals

Choosing how to generate a certain set of visuals depends, naturally, on the
nature of the dataset being visualized. Plasma physics simulations, for example,
generate scalar and vector fields (and in general, tensor fields as well) over the
simulation domain. Meaningful visualization of these fields is necessary for
correctly interpreting the generated datasets, and dedicated software exists for
this task, such as VTK[8] and the VTK-based ParaView[7] and VisIt[9].

For scalar fields, a volumetrically rendered cloud would, theoretically, be the
definitive solution for displaying scalar data in the whole of the 3D domain at
once. This is, however, expensive both in terms of rendering and data storage,
and might require a lot of fine-tuning 2. So far, I have resorted to using colored
isocontour surfaces to present scalar fields, as these are readily usable. That
said, there are some open raycasting volumetric rendering libraries for Unity
that could be used to achieve proper real-time volumetric renders. See e.g.
�Unity-RayTracing[10] and �unity-ray-marching[11].

Displaying a set of surfaces in 3D can be done in a few different manners
using different shaders. One option would be to render the surfaces as wholly
opaque, creating a solid object. Although such a surface is very tangible and
concrete, it would limit the presented data to a single surface (especially in
the case of nested surfaces). However, having nested surfaces, especially in
the case of isocontour surfaces is more than probable, so translucent surfaces
are a potential solution. Even when properly shaded (e.g. with a Lambertian
lighting model), these surfaces can blend together into a somewhat unintelligible,
bland mess. Adding rim shading allows the designer to highlight the tangential
portions of the surfaces and to fade out the surface portions whose normals
are facing the viewer. The normal-aligned portions of the surface contribute
little to the actual perception of the surface, so those can be made nearly fully
transparent. This allows interpreting the 3D shape of the surface, while allowing
for an unobstructed view of the innards of the system. Figure 1 on the following
page demonstrates the differences between different shader choices.

It is noteworthy that rendering complex translucent surfaces can produce
errors due to depth sorting issues[12]. These are practically unavoidable, and
may manifest themselves as flickering surfaces, especially when the surfaces are
lying very nearly on top of each others. Additionally, as the mesh surfaces are
oriented, one needs to account for inside and outside meshes, either through
somewhat involved shader scripting or using a duplicate mesh with its surface
normals inverted. The latter was employed in the demonstrator, as it is very
easy to implement, and perhaps more resilient against sorting errors.

Vector field visualizations are more simply and intuitively produced with
streamlines, directly. So far, there is a technical issue with directly using stream-

2In my personal experience, ParaView usually does nice volumetric plots with default
settings, while VisIt requires a lot of adjustment. Doing this properly inside e.g. Unity is
another can of worms that I have not yet delved into, at all

6

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://unity3d.com/
https://github.com/gillesferrand/Unity-RayTracing
https://github.com/brianasu/unity-ray-marching/tree/volumetric-textures
https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://unity3d.com/

Figure 1: Opaque (top) vs. translucent (middle) vs. rim-shaded (bottom)
surfaces, displayed using isocontours of plasma density in the Earth’s magneto-
sphere.

7

lines from ParaView or VisIt: neither has yet displayed capabilities of exporting
line meshes as-is, so e.g. with ParaView I have employed the tube filter to
generate a triangulated mesh for the streamlines, imported these to Unity, and
subsequently applied a normal extrusion shader to retain streamline visibility
regardless of perspective effects. Displacing the vertices of the tube along the
normal direction, by a distance proportionate to the distance between the vertex
and the camera position works well enough for most occasions.

An alternative method of displaying streamlines would be to use a vector
graphics library to draw the lines, such as Vectrosity[13]. Exporting stream-
lines in CSV from ParaView should do the trick3, but this has not yet been
implemented (see section 3.1.3 on page 10 for additional points).

Another alternative for vector field visualization is by using the vector field
to ascribe manifolds and surfaces thereof that purport some meaning. NASA
visuals (employing a rim shading effect) are visible here. In the clip, rim shaded
surfaces are used to visualize a vector field, namely that of the magnetic field of
the Earth. The actual definition of the surfaces in the NASA artist vision is not
clear, but surfaces like those could be defined, for example, by taking bundles of
field lines at constant latitudes on some small sphere outside the magnetic mo-
ment source region of the Earth. The field lines, when propagated from such a
constant-latitude surface, would span these sorts of “magnetic bubbles”, possi-
bly useful for showing actual X-line configurations and propagation of magnetic
flux in a Dungey cycle. L-shell surfaces can also be produced by seeding the
“manifold field lines” at the magnetic equator, from points of constant equato-
rial radius. See section 5 on page 23 for an example of L-shell plotting. One
should note that explaining these concepts to an audience member might not
be straightforward.

Animated surfaces can be implemented in several flavors. Simple pulsing
surfaces can be constructed within Unity, by using the animation controls and
e.g. scaling a primitive object. Another way would be to use separate meshes for
each animation frame, but this can produce choppy animations (unless almost
each render frame has its own mesh, which, at 90 Hz, can lead to unwieldy
datasets). Animated surfaces from ray tracing data by Mathias Fontell were
included through simple mesh deformations (basically, an implementation of
mesh keyframing[14]). The animated raytrace surfaces were presented by a set
of vertices for each ray at given time steps (keyframes), extracted from the
raytraces. The initial configuration of the rays (initial elevation and azimuth of
the ray) was converted to a triangulated topology via Delaunay triangulation,
forming an initial mesh.

Thereafter, the mesh vertex positions were linearly interpolated towards the
corresponding positions at the next raytrace timestep on each frame update,
with some suitably chosen velocity. The topology of the surface is constant in
this sort of a deformation, which is both easy to implement and delivers rea-

3This is achieved through the Save data menu option, instead of export scene option in
ParaView–this took a surprising while to notice!

8

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://www.paraview.org/
https://unity3d.com/
https://starscenesoftware.com/vectrosity.html
https://youtu.be/HvJfjVdJ79o?t=1m18s
https://unity3d.com/
https://www.paraview.org/

sonable physical intuition. Improvements for the implemented mesh keyfram-
ing could consist of e.g. pre-calculating normals for keyframes, instead of re-
calculating them for each frame (which is quite suboptimal) and optimizing
timesteps (constant times for ray paths are not strictly required: instead, ray-
specific keyframes with correct time stamps could be used to reduce memory
usage). In terms of physics, implementing some branch cuts between topological
neighbours in the case of large separation would be advisable (e.g. when one ray
refracts through the ionosphere and the next one reflects back to the ground),
perhaps through removing the offending triangles.

Deforming surfaces between non-isomorphic meshes, or how to generate sets
of isomorphic meshes to be used as keyframes from arbitrary data, has not
been looked into in this scope. For visualizations of time-dependent advanced
simulations, this might very well be necessary.

3.1.2 Intermission: Visually Induced Motion Sickness and disem-
bodiment

Visually Induced Motion Sickness (VIMS), an area of active research in itself,
is a feeling of nausea experienced when using immersive displays, due to mis-
matched sensory inputs from the eyes and the vestibular system of the user. The
effect seems to be most pronounced with virtual rotations and head movements
without a corresponding visual cue. The former van be produced by rotating
the user camera in the virtual space, and the latter may arise from insufficient
hardware (display lag) or software issues (interrupted rendering and/or head
tracking). Linear vection, or apparent self-motion may contribute to VIMS as
well, but relationship between VIMS and linear vection is not as clear as with
head motions, virtual or uncompensated, that produce circular vection: the
human sensory system is not as concerned with linear acceleration as with an-
gular accelerations (see e.g. the vestibular system that is dedicated to sensing
angular acceleration). Further examination of e.g. [15] and others should be
performed. In particular, the results in [16] should be looked into, as they could
be readily implemented to predict VIMS onset and to trigger VIMS-diminishing
features (or limit VIMS-inducing features)–provided the proposed method ac-
tually works.

Some guidelines recommend using discontinuous velocities for the user’s cam-
era, as this removes visual cues of acceleration. Some recommendations are to
not translate the user camera at all, but to “teleport” the user to target locations
(as done, for example, in the SteamVR Home environments).

Another VR peculiarity is the feeling of disembodiment experienced by the
users, when they cannot see their own limbs moving in the virtual world. Having
the accurately mapped controllers as visible proxies for the user’s hands could
help a bit, but a proper solution would be to have a proper inverse kinematics
avatar, that tries to calculate limb poses from controller position and orienta-
tion, using some realistically constrained set of joints and bones. FinalIK is

9

http://root-motion.com/

a potential solution4, along others. An inverse kinematics avatar is yet to be
implemented due to time constraints.

3.1.3 Movement and controls

The movement and control scheme in the demonstrator was designed, for the
most part, to try and avoid the VIMS problem. In the end, however, this
requirement had to be relaxed to provide for an easily approachable tour of the
environment.

The basic VIMS-avoiding control scheme was built around a specific
intuition: If you hold an object in your hand, and translate and/or rotate the
said object manually, your brain readily understands that rotation to apply to
the held object, and not to a translation and rotation of your head. This would
seem an obvious fact of human perception, but would the same mapping work
for arbitrarily large objects, or, indeed, the entirety of your environment? VR
gear allows one to test this hypothesis, and although not rigorously tested here,
it would seem to be the case: mapping the rotation of the user’s controller to
the entirety of the environment (or, equivalently in terms of user perception:
inversely mapping the transformation to the user avatar) would seem to hijack
this neural pathway for the benefit of the software designer.

The basic scheme, built around this hypothesis, is as follows, and is sym-
metrical with respect to controllers:

Translation Initiated with a slight pull of the trigger of a single controller. Maps
the movement of the single-point location of the controller to an inverse
displacement of the user avatar. Controller velocity is retained by the
avatar to allow movement by floating through space.

Rotation Initiated with a full pull of the trigger of a single controller. Map the
movement of the single controller as above, and additionally maps the
angular velocity of the controller to an inverse angular displacement of
the user avatar around the control point5.

Scaling Initiated by pulling the triggers of both controllers. Allows the user to
stretch and contract the world (or the inversely, the player character).
Allows translation and rotation as above, although by using the mean lo-
cation of the controllers as a control point for translation, and the mean
angular velocity of the controllers around this control point for rotation.
The (inverse) scale change of the environment (avatar) is calculated to cor-
respond to the change between the distance between the controllers, and
the position of the control point is held fixed between the scale changes,
and along with rotation and translation, the controller locations will be

4Handily included in the VR Essentials package included in the purchase of Unity license.
5Rotating the scene around the controller would work as well, but this would require an

additional skybox camera with separate functionality.

10

https://unity3d.com/

fixed during the scale change as well. This allows for e.g. intuitively grab-
bing the Earth at separate sides and stretching it to a desired size, with a
constant mapping of the controllers to the fixed points that the user took
hold of in the beginning.

The scheme seems very robust with respect to translation6 and rotation, but
unlimited scaling can lead to floating point errors, and new users tend to be
confused by the scaling function. Stretching the universe is not as intuitive as
holding a cup of coffee. Users tend to use the scaling function as a type of pinch-
to-zoom function, which leads to unsatisfactory navigation as users continually
stretch the universe to get closer to some object of interest. Instead, the target
object recedes into distance, as the universe in between expands relative to
the size of the avatar. Also, the scaling function is somewhat awkward when
transitioning between large scale differences, requiring several full stretches or
compressions to reach the desired scale.

That said, the author has been quite content with the scaling function7,
and plans to retain it for advanced users, as intuitively and coherently mapped
stretching and contraction are quite pleasant tools to work with. An additional
scaling function was implemented during the tour:

Single point
scaling

Initiated with press of trackpad, using the trackpad axis to determine
scaling direction (stretch/contract) and possibly scaling speed. Controller
position is used as the scaling pivot, so the user can use the controller as
a 3D zoom function. The velocity of the user is set to zero during scaling.

The scaling speed in the one-handed scheme is not strictly tied to actual
movements, and therefore can greatly exceed the one of two-handed scaling,
which is very useful. The addition of a single-controller scaling function also
completes a single-controller control scheme, which is quite advantageous during
prolonged expo use, as one controller can always be left to recharge, and the
single controller scheme is also easier to instruct in the use of.

Additionally, a point-and-click navigation method was tried: A “laser pointer”
from the controller8 was used to point and select a target object and position
(including chosen translucent surfaces), and the player would be smoothly trans-
lated to such a location that the pointed object would be some 0.5 meters from
the user controller. As pure translation manifests only as linear vection, with
no rotation, it sidesteps the main VIMS problem of unmatched rotations.

Outreach user experience needed to be easily approachable, however, as
outreach users, in general, have to be manually instructed in the use of both the
VR system and the controls. The control scheme was retained, but navigation
within the demonstrator was mostly organized through a menu and a set of

6Floating point errors related to translation can be dealt with by re-centering the scene
so that the user avatar is always close to the origin - most often visible when combined with
extremely small scales.

7Potentially delaying the design and implementation of new scaling functions...
8Technically, a raycast with a pointer graphic

11

preset tour points. The user controls were simplified from prototype versions
to the above controls, i.e. everything is done with a single button (the trigger).
The tour points also present a handy container for short audio narrations of the
environment, reducing the workload of instructors. A brief tutorial video of the
controls was included in an auxiliary dashboard, as well as acknowledgments
and credits.

Tour points, or shortcuts, were defined by a location, view direction and a
scale with respect to initial scale, and whenever the user chooses to travel to a
tour point via menu, the user’s location, rotation and scale are linearly interpo-
lated to the new location and orientation. In a space environment, however, the
scales and distances can vary wildly, and to account for single-precision floating
point errors, especially when the target tour point is far away, the user is initially
scaled up (or rather, the environment is scaled down), producing a sensation of
growth for the user and subsequently allowing the linear translation to function
without errors. The scale-translate system works currently when going from
small scale to large scale (and to correspondingly large distances), extension to
work automatically in all cases should still be implemented.

Potential improvements to the tour functionality would be to use an (op-
tional) VIMS-setting, that would render some static overlay grid for the dura-
tion of rotations, to give the user a set of fixed, non-rotating points to focus on.
The dashboard menus of the demonstrator do function in this way, provided
the user actually looks at them during a transition (which is improbable, as the
visuals during transitions can be pretty nice and informative). Another option
would be to use only translation for the transitions, which would restrict the
predefined tour views to a given angle, which is not very practical.

The dashboard, operated with a laser pointer function, consists of a vir-
tual satellite camera view of the Suomi 100 satellite, satellite and user position
and velocity data, a running spectrogram of user audio (to demonstrate sonified
space radio emissions), and controls for VR overlays (such as enable/disable spe-
cific visualizations, or change the Blue Marble month) and the aforementioned
shortcuts. See figure 2 on the next page for the dashboard layout.

3.2 Description of scenarios

Quite a few space physics and remote sensing scenarios were considered for the
outreach demonstrator, ranging from cometary nuclei to the entire solar system.
However, as dictated by resources and logistics, only the case of Earth and its
magnetosphere were implemented for the demonstrator. Especially, as the Earth
system is already quite complex, the smooth operation of the demonstrator was
seen to require a compact set of items to be presented.

3.2.1 The Earth system

The Earth system, as finally presented in the demonstrator, consists of the
Earth’s magnetosphere (Antti Lakka, GUMICS-4 MHD simulation), radio wave

12

Figure 2: The demonstrator dashboards: 1) The main controls dashboard, with
controls and data displays. 2) Credits panel. 3) Instruction video. The user is
situated in the middle, with the dashboard tops being roughly at waist level.

13

(a) The Earth, with the NASA Blue
Marble dataset and the orbits of Suomi
100 (blue), Aalto-1 (white) and the
International Space Station (green).
Nightside aurora borealis (adjusted
pre-made effect) is seen above the Arc-
tic. Ionospheric airglow is also visible.

(b) Ray trace surfaces of Mathias
Fontell implemented in Unity, emanat-
ing from Otaniemi ground station.

(c) Global magnetospheric MHD sim-
ulation from GUMICS-4 by Antti
Lakka, visualized by the author. Mag-
netic field lines, including two recon-
nection sites and solar wind density
contour surfaces are displayed from
this view.

(d) The dark side of the Moon (mostly
lit), visible against the backdrop of
GUMICS-4 simulations

Figure 3: The Earth near-space environment, implement in Unity, chosen fea-
tures.

propagation in the ionosphere (Mathias Fontell, Matray raytracing software),
ionospheric airglow and aurorae (artist’s vision), remote sensing data from the
NASA Blue Marble Next Generation collection[17] as the actual Earth, and ESA
Copernicus/Sentinel-2 imagery[18] for a specific Earth Observation demo. The
Moon was additionally included, but not very much advertised, as the Lunar
Reconnaissance Orbiter dataset height maps[19] suffered from import problems
(albedo map used was from LRO WAC[20] as well, without problems). Chosen
space physics portion of the demonstrator is displayed in figure 3, and Earth
observation features in figure 4 on page 16.

14

https://unity3d.com/
https://unity3d.com/

The magnetosphere is represented by magnetic field lines of the global
dipole field, compressed and stretched by the solar wind, and by the isocon-
tour surfaces of solar wind density. The bow shock, magnetopause and tail
lobes, as well as both dayside and tail reconnection is visible in the dataset.
Tour points for the demonstrator were set to an overlook position in front of the
magnetosphere, to the tail X-line and to the nightside aurorae. Visualizations
of L-shells, radiation belts and current systems are natural further inclusions
for a more developed demonstrator software.

Additionally, space audio recordings (that is, sonified radio signals) from the
near space of Earth, produced by the University of Iowa[21], were included as
spatial sources of audio in the demonstrator. The avatar’s audio stream was
run through Fourier analysis and displayed as a running spectrogram in the
user dashboard.

Extension to remote sensing is a natural inclusion in the outreach demon-
strator, as the Suomi 100 satellite does contain a wide-angle VIS camera. A
corresponding camera was specified to be contained in the avatar of the Suomi
100 satellite, rendering to a texture visible on the user’s dashboard. The virtual
camera was equipped with post-processing effects that adjust the effective ex-
posure values of the camera. The prototype version enabled the user to interact
with the satellite avatar, rotating (and even throwing it) in space, to test dif-
ferent camera angles. This feature was not included in the truck demonstrator.

Remote sensing elements displayed in the demonstrator include: sea glit-
ter (variable reflectivity/smoothness of oceans, Blue Marble bathymetry data
used instead of actual wave/wind data), global monthly datasets and cloud cover
snapshot (NASA Blue Marble, next generation), and ESA Copernicus/Sentinel-
2 imagery of forest fires in Split, Croatia in the summer of 2017. Additionally,
upper atmospheric lightning (sprites, elves and blue jets) were planned for im-
plementation, but were deferred for a later date. Virtual Suomi 100 imagery
can be “splatted” onto the Earth (see section 5.2 on page 24) already in the
prototype project, providing an additional publication medium for satellite re-
sults.

Other remote sensing instruments besides VIS band imaging can be en-
visioned. In a demo setting, hyperspectral imaging data cubes from Aalto-1
could be included, with spectral channels displayed e.g. as stacked images, and
an interface to control layer visibility and blending. Virtual cameras in Unity
could be configured to image a different set of objects and textures, presenting
e.g. Earth surface reflectivity at IR bands. Similar method could be used to
provide a virtual ENA9 instrument to reveal an otherwise hidden ENA emissiv-
ity distribution (implemented either through surfaces, or volumetric rendering
once implemented). See Vectrosity “X-ray vision” demo for an illustration of
potential functionality.

9Energetic Neutral Atom

15

https://unity3d.com/
https://starscenesoftware.com/vectrosity.html

(a) Variable reflections of sunlight from
the Mediterranean, emulating reflec-
tivity modulation due to sea surface
roughness. Some clouds visible.

(b) Split, Croatia: Forest fires of sum-
mer 2017, as seen by ESA Copernicus
program Sentinel-2, overlaid on global
data. Images before, during, and af-
ter the fires included. Note the low-
resolution background due to technical
limitations.

(c) The Old World hemisphere, no
clouds, as produced from NASA Blue
Marble. January 2004.

(d) The Old World hemisphere, no
clouds, as produced from NASA Blue
Marble. September 2004.

Figure 4: The Earth Observation system in Unity, chosen features. Monthly
datasets from Blue Marble can be browsed in the demonstrator (see Figs. 4c
and 4d)

16

https://unity3d.com/

3.2.2 67P/Churyumov-Gerasimenko

The original prototype scenario consisted of the plasma environment, simulated
with the Aalto hybrid plasma code, of the comet 67P/Churyumov-Gerasimenko
at approximately 2.4 AU from the Sun. One of the most striking features
of the system are the large differences in scales, even for this relatively weak
comet relatively far from the Sun, and the VR environment works very well in
displaying the differences in scale: The Rosetta probe, included in the prototype
(courtesy of NASA[22]), has its solar panels spanning some 30 m, while the
cometary nucleus (Matthias Malmer’s shape model and textures[23]) is some
4 km across, and the whole simulation domain is some ten thousand kilometers
across.

Data included in the prototype, besides the aforementioned shape models,
include cometary ion density isocontour surfaces (chosen at suitable values to
spread the surfaces evenly across scales), solar wind proton bulk flow (in the
sense of average motion, as the movement of the particles is kinetic in nature),
and the draping of solar wind magnetic field lines by the cometary plasma
environment. Colormaps and controls to affect data visibility are included in the
hand-held menu. The Earth was included for scale (and can be seen to disappear
in the distance at points, as the floating-point range of a single camera10 clip
planes is not sufficient with large scale differences).

For reference, see a screen capture video[24] of the 67P prototype in action,
with the two-handed control scheme seen in action, and with a setup of a hand-
held menu and info screen (replaced with the curved dashboard in the outreach
demo). Some advanced control and measurement features, likewise cut from the
Avaruusrekka demonstrator, are also seen in the clip.

The 67P prototype was not included in the public demonstrator (yet!) to
keep the expo demo concise.

3.2.3 More scenarios

The Aalto hybrid model provides possibilities for demonstrating plasma envi-
ronments across the solar system, with the author having simulated Mercury,
Venus, Mars, comets, and parts of the lunar plasma environment. A long-term
plan would be to include basically the whole of the solar system plasma envi-
ronments in a single demonstrator across the scales, in collaboration with other
groups capable of delivering some missing pieces of the system, such as Univer-
sity of Helsinki solar corona simulations. CMEs in the scale of the heliosphere,
along with some backdrop of regular solar wind, could be presented as well.
Including the huge Jovian and Kronian magnetospheres would be interesting as
well, for example through Ilja Honkonen’s MHD simulations, with inner parts of
these systems, like Titan, presented with high-fidelity models. Having the rea-
sonably well functioning prototype and the Avaruusrekka expo demonstrator
enable subsequent additions in a relatively fast workflow.

10multiple VR-enabled cameras were introduced in a new version of Unity

17

https://drive.google.com/open?id=0B97WoSiWSq27WEEtS0FmNVFwdmc
https://unity3d.com/

3.3 Additional development

Additional technical developments , esp. with remote sensing, would in-
clude streaming textures for the globe, to accommodate resolutions at the 100 m
scale (or even further). Unity engine constraints limit textures to 8192x8192
pixels, maximum, without the use of sparse textures11. The Granite library
for Unity is being considered as a solution to enable streaming textures, with
less overhead for actually implementing the streaming features. Using other
streaming solutions, such as Google Earth APIs or NASA WorldWind should be
looked into. Sadly, the WorldWind C] implementation[25] has been discontin-
ued. Google Earth Engine API works on JavaScript, so this could be potentially
useful, although the API is restricted to evaluators only at this point, and use
restrictions may apply - and it’s not very clear whether or not the API can be
interfaced with Unity, either.

Interfacing to remote sensing APIs such as NASA WorldView/WorldWind
or Google Earth Engine, would be very beneficial, as one could directly interface
to huge Earth observation datasets through these APIs. Both terrain models
and textures could be readily obtained through the Internet, reducing the size of
the demonstrator build immensely. By default, the services provide robust GIS
data, reducing developer overhead. Lack of good Internet connectivity might
be a problem at certain settings, but the benefits would outweight the problem,
and some lower-resolution data can always be retained as a fallback option.

Granite would enable using textures with dimensions of 262144x262144, reach-
ing a global resolution at the equator of roughly 40000 km/262144 px≈ 150 m/px,
while the NASA Blue Marble datasets have a corresponding resolution of about
500 m/px. However, additional custom solutions are required to implement e.g.
monthly datasets (probably via re-mapping UV coordinates onto a concatenated
texture atlas of monthly datasets), and the library does have some technical re-
strictions with respect to the number of textures accessible from a single tileset.
See figure 5 on the next page for resolution comparisons.

Scales, distances and floating points don’t mix very well, and some more
flexible solution than now employed (scaling only the user avatar or the scene)
is required for the smooth inclusion of the large scale differences and distances
in space. Scaling the scene proved to be problematic for proper rendering of
translucent objects, so either a combined or avatar-based scaling system is to
be developed further. Some floating-point errors are already resolved via the
use of scene recentering, so that the user avatar always resides very close to the
origin, where the floating-point precision is the highest.

A hierarchical set of floating-point coordinates could be a solution for the
problem, some of which has already been implemented in the demonstrator for

11Unity includes a sparse textures feature, that taps into DX11.2 tiled resources, but its use
requires plenty of manual coding

18

https://unity3d.com/
http://graphinesoftware.com/products/granite-for-unity
https://unity3d.com/
https://worldwind.arc.nasa.gov/
https://www.openhub.net/p/wwc
https://unity3d.com/
https://unity3d.com/
https://docs.unity3d.com/ScriptReference/SparseTexture.html

(a) Southern Finland, seen at 8192 pix-
els/parallel.

(b) Southern Finland, seen at 86400
pixels/parallel.

(c) Croatian coastline and overlaid for-
est fires imagery, seen at 8192 pix-
els/parallel.

(d) Croatian coastline and overlaid for-
est fires imagery, seen at 86400 pix-
els/parallel.

Figure 5: Granite library improvements to resolution, from Unity-constrained
to full Blue Marble resolution.

easy handling of different celestial and geographic coordinate systems. However,
the implemented coordinate systems do not (yet) contain scaling information.
For reference of a working, Unity-based solution, the reader is directed to the
PC game Kerbal Space Program, which actually has its own education branch
for space and aerotech purposes, as well.

Orbits of satellites, including the Moon, are already generated from the set
of orbital parameters for each object, for some given epoch, and can be readily
attached to corresponding coordinate systems. Interfacing to Space-Track or
SPICE kernels and having an automated epoch system would introduce a fine
addition to the system.

3.3.1 Multi-platform compatibility and distribution

Using the Unity software, the demonstrator is readily deployed to almost all
platforms, from HTC Vive on Windows PC to Google Cardboard, and with
some modification to a less immersive environments, to AR applications on
smartphones and web browsers. Essentially, the user interface and visual set-
tings need to be adjusted to account for deployment on e.g. touchscreen systems
and comparatively lightweight hardware.

The space truck outreach demo could be distributed as-is, available to all

19

https://unity3d.com/
https://unity3d.com/
https://kerbalspaceprogram.com/en/
https://www.space-track.org/auth/login
https://unity3d.com/

users HTC Vive access, or suitable middleware to use Vive software with e.g.
Oculus or other devices (which would be at the user’s discretion, with no devel-
oper support required). Publication and free availability of the demonstrator
would be advisable for significantly improved outreach impact, but some addi-
tional work should be put into the current demo, e.g. localization to English, for
example. In a solely user-driven environment, there are no additional, external
issues of available demonstration time, as in the case of the space truck setting
with significant queues observed.

3.4 Expo usage and observations

The VR system has proven to be quite a popular attraction during the truck
tour, with quite a lot of positive feedback: the demonstrator has been described
as very informative, entertaining and captivating, and as such could be called
an unmitigated outreach success. Even with the suboptimal VIMS-avoidance
of the touring system, instances of symptoms are quite rarely reported, and
manageable when reported.

The main problem of the system is the single-user limitation of the gear,
which can and will lead to long queues. Queue mitigation procedures, usually
effective, include showing only select portions of the demonstrator, and in the
extreme cases, only a very general overview with no user interaction. User
feedback has been quite good even in this case, but from the view of the pre-
senter, this sort of heavy attendance is quite tiring and unfulfilling, as a lot
of the material is discarded for the hurried viewers. Especially in the case of
(young) children, it is better to not divulge the controls to the young user, with
the presenter controlling the demo manually. This is very handy in the case
of large school groups. Care must be taken when using the VIMS-unfriendly
touring function without the dashboard menus visible. Going through the whole
demonstrator with an inspired audience member, however, is very rewarding.
These claims can be corroborated by the permanent expo staff.

As an extreme case of heavy attendance, the Avaruusrekka event on the 29th
of September, during the European Researcher’s Night in Jyväskylä, Finland,
drew an estimated audience of over 5000 viewers in the truck expo itself, with an
unestimated attendance at the VR demonstrator–suffice to say, that there was a
lengthy (10-20 people) queue for almost the whole duration of the night, starting
immediately from 16 o’clock and lasting to 23 o’clock, with the action subsiding
towards midnight and the cessation of the day’s expo. Even with heavy use of
the aforementioned queue mitigation techniques, it is probable that a significant
amount of potential users yielded from participating in the demonstrator.

3.5 Outreach: conclusions

The outreach demonstrator has produced a good audience response, even in the
limited scale that the users have been able to explore the demonstrator. With
the growing prevalence of VR gear, especially with smart phones, having the
demonstrator software publicly available could amount to a significant impact

20

Figure 6: Avaruusrekka expo setup after the European Researcher’s Night 2017 in
Jyväskylä. One lighthouse is installed on a light stand and the other on the wall,
visible in the upper left corner of the image. Lighthouses are connected with the sync
cable. The VR laptop is on the side table, with HTC Vive link box beside it. A Pico
projector is mounted on the wall, mirroring the laptop display. I recommend using a
large info screen instead of projectors for both better quality and less interference by
projector beaming. A nightside auroral arc is visible in the projector screen.

21

on the public audience in terms of space science outreach. Free distribution of
the built software is therefore recommended12, for as many platforms as feasible.

4 Diving to Data: VR for Space Research

Having a true, immersive 3-D view of three-dimensional datasets could be seen
advantageous in interpreting complex simulation results, such as magnetic topol-
ogy and the structure of flow fields. Although 3-D visualization software, such
as ParaView, VisIt and VTK are very useful in producing 3-D plots, a usual
modus operandi is to extract 2-D slices of the whole simulation volume, or by
tracing magnetic field lines from seed points along some given line. This sort of
analysis might overlook significant physical processes, such as non-axial draping
patterns at comets[26]. VR systems, as such, do not create new tools to analyze
data, but enable a more direct view of, and an immersive interface to the data.

However, the workflow employed in the demonstrator software is somewhat
rigid, as datasets have to be pre-analyzed and results exported into the VR
software with some steps in between. Directly modifying plots from within the
VR software would be essential for fluent analysis of data in a VR environment,
and thankfully, there are libraries for interfacing between VR engines and vi-
sualization libraries. For example, �VtkUnity interfaces Unity to the VTK
library, through the use of ActiViz[27] (C] bindings for VTK) and Vectrosity
(vector graphics library for Unity). Another (more costly and more unexplored)
solution would be the use of MiddleVR. For future developments, client-server
configurations in a cluster or supercomputing environment should be kept in
mind, and both VTK and MiddleVR support cluster deployment.

Interactable plotting in a VR environment opens up a huge amount of
intuitive plotting options, besides seeing regular static visualizations in true 3-
D (which is not too shabby, either). For example, the user could adjust an
isocontour surface by changing the contour value on the fly from within the VR
environment and locate some interesting feature. After locating the feature,
one could seed streamlines (either some flow lines or magnetic field lines) from
a precisely and easily defined point in 3-D to examine the local topology, as one
can pinpoint points of 3-D space using the VR controller with ease. Likewise,
test particle tracing could be performed “from hand”, by tracing particles under
the Lorentz force, sampled from some parametrized or simulated distribution
and injected and oriented by the user and the hand-held controller13.

Proper interfacing of data handling libraries would also enable intuitive use
of virtual detectors and/or satellites: The user could spawn a satellite with given
instruments and drag it along or through potentially interesting features in 3-
D space, with the software fetching simulated data points on the fly from the
interfaced dataset. A virtual dashboard, as seen in the demonstrator, could be

12especially when the Suomi 100 satellite data products start to arrive and are included in
the software

13Also, 3-D mouse compatibility with current visualization software should be looked into!

22

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://github.com/ufz-vislab/VtkUnity
https://www.kitware.eu/product/activiz
https://starscenesoftware.com/vectrosity.html
https://unity3d.com/
http://www.middlevr.com/home/

used to display a plot of virtual data along the user-defined trajectory (see e.g.
the outreach demonstrator’s live spectrogram). Satellite and sensor orientation
with respect to the environment would be easy to inspect given the immersive
nature of the display. Tools, such as Touko Haunia’s Rosetta tool, that interface
to SPICE kernels and produce satellite ephemeris could be incorporated to show
actual locations and orientations of probes and sensor suites.

Implementing these science tools into the existing demonstrator software
would be reasonably straightforward: include the interface libraries to the soft-
ware and expose select parts of the VTK library for the VR user. User interface
construction in Unity is relatively straightforward as well. Additional tools,
such as test particle tracers, require a bit more effort, but existing algorithms
are readily available.

5 Software tips & tricks

5.1 ParaView to Unity

A suitable workflow for exporting ParaView meshed data to Unity entails ex-
porting the ParaView scene in .x3d format, which exports vertex colors and
normal data. Importing the data into MeshLab[28], the mesh can be then
retouched, e.g. with a decimate operation. Exporting from MeshLab in the
COLLADA .dae format transfers vertex colors properly to Unity, completing
the pipeline.

In ParaView one may construct the plots as usual. With a proper pipeline
and file formats, the plot colors will be transferred to Unity automatically - this
is true for at least RGB values. Alpha channel export has not been tried, as
alpha has been configured in Unity to produce the wanted visuals. Streamline
plots have been exported, thus far, through the use of the tube filter to produce
a triangulated mesh for each streamline, which can be expensive in terms of
polygons.

Pipeline:

ParaView Generate meshes from plots. Note that ParaView will export all visible
objects in a scene, so make sure to export only the parts you need by
hiding the unwanted pipeline phases and plots.

Export File -> Export scene..., use the Extensible 3D Graphics format (.x3d)

MeshLab Convert and retouch meshes to work properly with Unity. Strictly, only
the import and export steps are needed, and decimate and Poisson surface
features are included for reference.

Import File -> Import Mesh...

23

https://unity3d.com/
https://www.paraview.org/
https://unity3d.com/
https://www.paraview.org/
https://unity3d.com/
https://www.paraview.org/
http://www.meshlab.net/
http://www.meshlab.net/
https://unity3d.com/
https://www.paraview.org/
https://unity3d.com/
https://unity3d.com/
https://www.paraview.org/
https://www.paraview.org/
http://www.meshlab.net/
https://unity3d.com/

Decimate Filters -> Remeshing, Simplification and Reconstruction

-> Quadric Edge Collapse Decimation

Poisson surf. Filters -> Point Set -> Surface Reconstruction: Poisson

Export File -> Export Mesh As..., COLLADA .dae format

Unity It is advisable to re-calculate mesh normals during import, otherwise a
smooth mesh may appear with a flat shading. Also, it is useful to scale
the mesh using the import inspector.

5.2 Unity

A handy tool with lots of free (and more-or-less reasonably priced) assets and
scripts. A collection of notes.

Splatting imagery works through using a camera object at the imaging lo-
cation, set to a proper attitude. The imaging plane can be construed at e.g.
the camera near plane, after which one can raycast the plane vertices from the
camera onto a suitable (sphere) collider. The image plane can be textured ei-
ther with a render texture from a virtual camera, or read from a file (see .NET
System.IO). One could even animate the “splatting” process through a mesh
deformation, as with the raytrace surfaces. The special case of over-the-horizon
imaging has to be handled separately, though, and this is not yet implemented
(only disabled).

Rim shading was implemented as having both the emission and alpha val-
ues of the surface modified by factor of the form (1 − n̂ · v̂)γ , where n̂ is the
surface normal, v̂ the normalized view direction, and γ a real parameter giving
the strength of the rim effect, usually with γ > 1. The factor is additionally
saturated to the range [0, 1] for sanitarity.

A method for creating L-shell surfaces was examined during the develop-
ment (and displayed in figure 7 on the following page), although it was not used
in the demonstrator to constrain the scope of the demo. First, using ParaView,
field lines from a constant equatorial radius were extracted using the stream-
line filter. On top of the streamlines, a ribbon filter was applied to transform
the line mesh to a set of narrow, triangulated meshes, with associated normal
information. ParaView successfully computed reasonable normal data for the
L-shell streamlines, orienting the surfaces of the ribbons consistently and in a
sufficiently intuitive manner14. The resulting mesh of ribbons can be exported
to MeshLab for surface reconstruction. MeshLab can perform a Poisson surface
reconstruction, using the point and normal data of the exported mesh, and the
results are very satisfactory, as long as the ribbons do not overlap and do not

14I haven’t found the definition for ParaView-computed normals, but they would look to
be perpendicular to the curvature and the actual vector field, which is exactly what would be
needed for this to work properly.

24

https://unity3d.com/
https://unity3d.com/
https://msdn.microsoft.com/en-us/library/system.io.aspx
https://msdn.microsoft.com/en-us/library/system.io.aspx
https://www.paraview.org/
https://www.paraview.org/
http://www.meshlab.net/
http://www.meshlab.net/
https://www.paraview.org/

(a) Constructing a
set of streamlines on
a shell in ParaView

(b) Constructing
the surface from
stream ribbons

(c) The L = 8 shell in Unity, with
B field lines and translucent rim
shading

Figure 7: Phases in constructing an L-shell surface with ParaView and MeshLab

contain spurious elements. As a disclaimer, the test data had its magnetic field
cropped to zero below 3 Earth radii, so the produced L-shell had somewhat
awkwardly capped polar regions. Producing toroidal surfaces, or ones clipped
only inside one Earth radius to hide the discontinuity, have not been tested yet,
and some care might have to be taken when having relatively tight cusp-type
geometries.

Normal extrusion refers to using a vertex shader function to modify the
vertex positions in the render pipeline, using the GPU (so it is considerably
cheaper than using mesh deformations). This is useful with tube-type streamline
plots, as the tubes tend to disappear in the distance much too quickly, when
the developer wishes to retain streamline visibility. In the vertex shader, the
distance of the view point to the vertex is calculated, and the vertex position
is translated along the vertex normal in proportion to the view point–vertex
distance. This enables the far-away portions of streamlines to expand, and
retain visibility. A shader was implemented to provide this functionality, but
in some cases (scale transformations by scaling the scene, not the user avatar),
mesh deformations to provide the same functionality had to be applied as well.
This is a point of future optimization, perhaps through vector graphics libraries.

Attachements

A. Prototype source

The prototype was built using Unity 5.4 personal edition, and the source code
suffers from code and asset bloat. Due to the use of the personal edition license
terms limiting the use of Unity or derived products to education use, the proto-
type shall not be publicly presented or distributed. The prototype source code
is included in the database (folder VR bloatware), and can be opened with a
compatible Unity version (5.4.2f2 or more recent).

The source code is arranged as a Unity project, with all assets (3-D models,
textures, scripts, etc.) included in the Assets folder, with the remainder of the

25

https://www.paraview.org/
https://www.paraview.org/
http://www.meshlab.net/

folders consisting of Unity project housekeeping. The code (not accounting for
included assets possibly written in JavaScript) is written in C]and ShaderLab.

B. Outreach demonstrator source and build

The outreach demonstrator was developed with the know-how from the proto-
type version, using a new Unity version (2017.1.1f1), taking advantage of new
features. Both the demonstrator source code and a prepared version are at-
tached in the given database. The source code (in the folder VR-outreach) can
be opened with a compatible Unity version (2017.1.1f1 or more recent), and the
pre-compiled build (in the folder VR outreach Avaruusrekka build 4) can be
executed on Windows PCs (using a HTC Vive headset is required). The Out-
reach demonstrator was developed using a commercial license of Unity, clearing
the source code and built products for public and research use. NB: Developing
the Outreach demonstrator with a personal edition is not allowed, per license
terms.

The source code is arranged as a Unity project, with all assets (3-D mod-
els, textures, scripts, etc.) included in the Assets folder, with the remainder of
the folders consisting of Unity project housekeeping. The code (not accounting
for included assets possibly written in JavaScript) is written in C]and Shader-
Lab. The compiled software in the build folder can be executed by running the
provided VR Outreach.exe in the root folder.

References

[1] This Is How Valve’s Amazing Lighthouse Tracking Technology
Works. Accessed 2017-10-23. [Online]. Available: https://gizmodo.
com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768

[2] Microsoft’s Windows Mixed Reality: everything
you need to know. Accessed 2017-10-23. [On-
line]. Available: https://www.theverge.com/2017/10/17/16487936/
microsoft-windows-mixed-reality-vr-headsets-guide-pricing-features

[3] What HoloLens’ field of view really looks like. Ac-
cessed 2017-10-23. [Online]. Available: http://newatlas.com/
hololens-fov-field-of-view-illustrated/44903/

[4] Unity Technologies, “Unity.” [Online]. Available: https://unity3d.com/

[5] Epic Games, “Unreal engine,” 2007. [Online]. Available: https:
//www.unrealengine.com

[6] R. Hess, The essential Blender: guide to 3D creation with the open source
suite Blender. No Starch Press, 2007, software available at https://www.
blender.org/.

26

https://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768
https://gizmodo.com/this-is-how-valve-s-amazing-lighthouse-tracking-technol-1705356768
https://www.theverge.com/2017/10/17/16487936/microsoft-windows-mixed-reality-vr-headsets-guide-pricing-features
https://www.theverge.com/2017/10/17/16487936/microsoft-windows-mixed-reality-vr-headsets-guide-pricing-features
http://newatlas.com/hololens-fov-field-of-view-illustrated/44903/
http://newatlas.com/hololens-fov-field-of-view-illustrated/44903/
https://unity3d.com/
https://www.unrealengine.com
https://www.unrealengine.com
https://www.blender.org/
https://www.blender.org/

[7] U. Ayachit, “The paraview guide: a parallel visualization application,”
2015, software available at https://www.paraview.org/.

[8] W. J. Schroeder, B. Lorensen, and K. Martin, The visualization toolkit: an
object-oriented approach to 3D graphics. Kitware, 2004.

[9] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Oct 2012, pp. 357–372, software available
at https://wci.llnl.gov/simulation/computer-codes/visit/.

[10] G. Ferrand, J. English, and P. Irani, “3D visualization of astronomy data
cubes using immersive displays,” ArXiv e-prints, Jul. 2016.

[11] B. Su. unity-ray-marching. Accessed 2017-10-23. [Online]. Available: https:
//github.com/brianasu/unity-ray-marching/tree/volumetric-textures

[12] Transparency Sorting. Khronos group. Accessed 2017-10-23. [Online].
Available: https://www.khronos.org/opengl/wiki/Transparency Sorting

[13] Vectrosity. Starscene Software. Accessed 2017-10-23. [Online]. Available:
https://starscenesoftware.com/vectrosity.html

[14] Keyframe Animation. Khronos group. Accessed 2017-10-23. [Online].
Available: https://www.khronos.org/opengl/wiki/Keyframe Animation

[15] J. E. Bos, W. Bles, and E. L. Groen, “A theory on visually
induced motion sickness,” Displays, vol. 29, no. 2, pp. 47 – 57,
2008, health and Safety Aspects of Visual Displays. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141938207000935

[16] M. Imura, P. Figueroa, and B. Mohler, Eds., Visually Induced Motion
Sickness Estimation and Prediction in Virtual Reality using Frequency
Components Analysis of Postural Sway Signal, 10 2015. [Online].
Available: https://www.researchgate.net/publication/283856134 Visually
Induced Motion Sickness Estimation and Prediction in Virtual Reality
using Frequency Components Analysis of Postural Sway Signal

[17] R. Stöckli, E. Vermote, N. Saleous, R. Simmon, and D. Herring, “The
blue marble next generation-a true color earth dataset including seasonal
dynamics from modis,” Published by the NASA Earth Observatory,
2005, datasets available at https://visibleearth.nasa.gov/view cat.php?
categoryID=1484. [Online]. Available: ftp://169.154.132.40/bluemarble/
bmng/bmng.pdf

[18] Esa copernicus open access hub. Copernicus Sentinel data 2017. [Online].
Available: https://sentinels.copernicus.eu/web/sentinel/home

27

https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
https://github.com/brianasu/unity-ray-marching/tree/volumetric-textures
https://github.com/brianasu/unity-ray-marching/tree/volumetric-textures
https://www.khronos.org/opengl/wiki/Transparency_Sorting
https://starscenesoftware.com/vectrosity.html
https://www.khronos.org/opengl/wiki/Keyframe_Animation
http://www.sciencedirect.com/science/article/pii/S0141938207000935
https://www.researchgate.net/publication/283856134_Visually_Induced_Motion_Sickness_Estimation_and_Prediction_in_Virtual_Reality_using_Frequency_Components_Analysis_of_Postural_Sway_Signal
https://www.researchgate.net/publication/283856134_Visually_Induced_Motion_Sickness_Estimation_and_Prediction_in_Virtual_Reality_using_Frequency_Components_Analysis_of_Postural_Sway_Signal
https://www.researchgate.net/publication/283856134_Visually_Induced_Motion_Sickness_Estimation_and_Prediction_in_Virtual_Reality_using_Frequency_Components_Analysis_of_Postural_Sway_Signal
https://visibleearth.nasa.gov/view_cat.php?categoryID=1484
https://visibleearth.nasa.gov/view_cat.php?categoryID=1484
ftp://169.154.132.40/bluemarble/bmng/bmng.pdf
ftp://169.154.132.40/bluemarble/bmng/bmng.pdf
https://sentinels.copernicus.eu/web/sentinel/home

[19] F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Whlisch, E. J.
Speyerer, and M. S. Robinson, “GLD100: The near-global lunar 100 m
raster DTM from LROC WAC stereo image data,” Journal of Geophysical
Research: Planets, vol. 117, no. E12, pp. n/a–n/a, 2012, E00H17.
Raster available at https://astrogeology.usgs.gov/search/map/Moon/
LRO/LROC WAC/Lunar LROC WAC GLD100 79s79n 118m v1 1. [On-
line]. Available: http://dx.doi.org/10.1029/2011JE003926

[20] LRO LROC-WAC Global Mosaic 100m June2013.
Accessed 2017-10-23. [Online]. Available: https:
//astrogeology.usgs.gov/search/map/Moon/LRO/LROC WAC/
Lunar LRO LROC-WAC Mosaic global 100m June2013

[21] D. A. Gurnett. Space audio recordings. Accessed 2017-10-23. [Online].
Available: http://www-pw.physics.uiowa.edu/space-audio/

[22] Rosetta 3D model. Accessed 2017-10-23. [Online]. Available: https:
//nasa3d.arc.nasa.gov/detail/eoss-rosetta

[23] M. Malmer. Accessed 2017-10-23. [Online]. Available: http://mattias.
malmer.nu/category/rosetta/

[24] M. Alho. VR prototype recording of the comet 67P. Accessed
2017-10-23. [Online]. Available: https://drive.google.com/open?id=
0B97WoSiWSq27WEEtS0FmNVFwdmc

[25] Worldwind C]. Accessed 2017-10-23. [Online]. Available: https://www.
openhub.net/p/wwc

[26] C. Koenders, C. Goetz, I. Richter, U. Motschmann, and K.-H. Glassmeier,
“Magnetic field pile-up and draping at intermediately active comets:
results from comet 67p/churyumovgerasimenko at 2.0au,” Monthly Notices
of the Royal Astronomical Society, vol. 462, no. Suppl 1, pp. S235–S241,
2016. [Online]. Available: http://dx.doi.org/10.1093/mnras/stw2480

[27] Activiz. Kitware. Accessed 2017-10-23. [Online]. Available: https:
//www.kitware.eu/product/activiz

[28] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “MeshLab: an Open-Source Mesh Processing Tool,” in Eu-
rographics Italian Chapter Conference, V. Scarano, R. D. Chiara, and
U. Erra, Eds. The Eurographics Association, 2008, software available
at: http://www.meshlab.net/.

28

https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LROC_WAC_GLD100_79s79n_118m_v1_1
https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LROC_WAC_GLD100_79s79n_118m_v1_1
http://dx.doi.org/10.1029/2011JE003926
https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LRO_LROC-WAC_Mosaic_global_100m_June2013
https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LRO_LROC-WAC_Mosaic_global_100m_June2013
https://astrogeology.usgs.gov/search/map/Moon/LRO/LROC_WAC/Lunar_LRO_LROC-WAC_Mosaic_global_100m_June2013
http://www-pw.physics.uiowa.edu/space-audio/
https://nasa3d.arc.nasa.gov/detail/eoss-rosetta
https://nasa3d.arc.nasa.gov/detail/eoss-rosetta
http://mattias.malmer.nu/category/rosetta/
http://mattias.malmer.nu/category/rosetta/
https://drive.google.com/open?id=0B97WoSiWSq27WEEtS0FmNVFwdmc
https://drive.google.com/open?id=0B97WoSiWSq27WEEtS0FmNVFwdmc
https://www.openhub.net/p/wwc
https://www.openhub.net/p/wwc
http://dx.doi.org/10.1093/mnras/stw2480
https://www.kitware.eu/product/activiz
https://www.kitware.eu/product/activiz
http://www.meshlab.net/

	Introduction
	VR and AR solutions
	State-of-the-Art consumer devices
	HTC Vive
	Oculus Rift
	Microsoft Mixed Reality
	PlayStation VR
	Cellphone-based

	Near future developments
	Microsoft Hololens
	Varjo

	Software
	Unity3D
	Unreal Engine
	Blender
	ParaView

	Floating in Space: VR for Space Outreach
	Design choices
	Visuals
	Intermission: Visually Induced Motion Sickness and disembodiment
	Movement and controls

	Description of scenarios
	The Earth system
	67P/Churyumov-Gerasimenko
	More scenarios

	Additional development
	Multi-platform compatibility and distribution

	Expo usage and observations
	Outreach: conclusions

	Diving to Data: VR for Space Research
	Software tips & tricks
	ParaView to Unity
	Unity

