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In the year 2017, Aalto University is set to launch the Suomi 100 centenary
nanosatellite, which is planned to be equipped with an AM HF/MF receiver for
studying the Earth’s ionosphere and radio propagation. This is intended to be
done by computational ray tracing, in which a radio signal is traced through a
predetermined medium by sequential refraction and propagation calculations.

In this report we set to describe the basic principles of ray tracing using cold
plasma theory and ionospheric physics, and study a variety of published ray tra-
cing methods with their respective results. The insight gained by this study
prompted us to develop our own ray tracing software for the Suomi 100 mis-
sion, and as a result we propose in this report a numerical Poynting vector
method suited for tracing pseudoreal HF/MF rays in a static and anisotropic
three-dimensional grid. We also present results of a computer code programmed
with the proposed iterative refraction logic, and conclude that the refraction calcu-
lations converge with sufficient speed. We ultimately underline known limitations
of the proposed ray tracing method, and suggest improvements that are necessary
for the Suomi 100 mission.
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Vuonna 2017 Aalto-yliopiston on tarkoitus laukaista Suomi 100-
satavuotisnanosatelliitti, joka on suunniteltu varustettavan AM HF/MF-
vastaanottimella. Radiovastaanottimella on tarkoitus tutkia Maan ionosfääriä
sekä radioaaltojen etenemistä ns. laskennallisen ray tracingin avulla, jossa
radiosignaalia seurataan ennaltamääritetyssä väliaineessa peräkkäisten refraktio-
ja etenemislaskelmien seurauksena.

Kuvailemme tässä raportissa ray tracingin perusperiaatteet kylmän plasman
teoriasta ja ionosfäärifysiikasta lähtien, ja tutkimme erilaisia julkaistuja ray
tracing-metodeja sekä niillä saatuja tuloksia. Tästä tutkimustyöstä saatu ym-
märrys kannusti meitä kehittäämän oma ray tracing-ohjelmamme Suomi 100-
tehtävän käyttöön, jonka seurauksena esitämme tässä raportissa numeerisen
Poyntingin vektoriin pohjautuvan ray tracing-metodin. Kyseinen metodi sovel-
tuu seuraamaan pseudoreaaleja HF/MF-säteitä staattisessa ja anisotrooppisessa
kolmiulotteisessa hilassa. Esitämme myös ehdotetulla refraktiologiikalla ohjel-
moidun tietokonekoodin tuloksia, ja huomaamme että kyseiset iteratiiviset refrak-
tiolaskelmat suppenevat riittävällä nopeudella. Lopuksi alleviivaamme ehdotetun
ray tracing-metodin tunnetut rajoitteet, ja esittelemme tarvittavia parannuksia
Suomi 100-tehtävän toteuttamista varten.

Avainsanat: Suomi 100-satelliitti, ray tracing, radio, ionosfääri
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Preface
The work presented in this paper has been carried out at the Department of Radio
Science and Engineering at Aalto University School of Electrical Engineering, in the
research group for Space Physics during the summer of 2016. The research presented
in this paper has been completed in the context of the Finland 100 (Fin: Suomi 100)
centenary nanosatellite.

I would like to extend my most sincere gratitude to Professor Esa Kallio, whose
expertise and persistence guided my work throughout my time at the Space Physics
group. Through his initiative, our group decided to set forth the development of its
own ray tracing program, and it is my heartfelt wish that the ray tracer presented in
this paper is developed to working condition for the Suomi 100 mission. Moreover,
I would like to thank my colleagues and fellow summer students, Petri Koskimaa
and Miika Mäkelä, with whom I had the pleasure of working the entire summer.
Petri’s extensive knowledge of radio technology greatly complemented my theoretical
emphasis on radio ray tracing, and Miika’s expertise with computational physics
helped me considerably with various tasks.

The Suomi 100 nanosatellite is truly a brilliant project for celebrating one century
of Finnish independence. The satellite testifies the zeitgeist of our dawn in the
Space Age, and I should be very grateful for the opportunity to participate in this
exciting effort. If everything goes according to plan, the Suomi 100 satellite will be
launched to low Earth orbit in late 2017 - from this vantage point, it will provide
participating researchers with novel scientific insight, and if all goes well, inspire the
space engineers of our future.

Otaniemi, August 18, 2016 Mathias Fontell
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Symbols and abbreviations

Symbols
e elementary charge ≈ 1.6022× 10−19 C
c speed of light in vacuum ≈ 3× 108 m/s
ε0 vacuum permittivity ≈ 8.854× 10−12 F/m
µ0 vacuum permeability = 4π × 10−7 N/A2

kB Boltzmann constant ≈ 1.381× 10−23 J/K
RE mean radius of Earth ≈ 6371.0× 103 m
E electric field [V/m]
B magnetic flux density [T]
D electric displacement field [Cm-2]
H auxiliary magnetic field [A/m]
ρf free electric charge density [Cm-3]
jf free electric current density [Am-2]
N particle density [1/m3]
û unit vector of vector u
u⊥ component of vector u perpendicular to some other vector
u‖ component of vector u parallel to some other vector, so that u = u⊥ + u‖
|u| Euclidean norm (i.e. length) of vector u
i unit imaginary number
k wave normal
vp wave phase velocity = ω

k
k̂

vg group velocity = ∂ω
∂k

Operators
z∗ complex conjugate of complex number z
A ·B scalar product of vectors A and B
A×B cross product of vectors A and B
∇ the nabla operator = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z

∇r nabla operator in spatial dimensions
∇f gradient of scalar field f
∇ ·A divergence of vector field A
∇×A curl of vector field A
d
dx

total derivative with respect to variable x
∂
∂x

partial derivative with respect to variable x

Abbreviations
AM Amplitude Modulation
HF High Frequencies, i.e. 3 to 30 MHz [3]
MF Medium Frequencies, i.e. 0.3 to 3 MHz
IRI International Reference Ionosphere
UTC Coordinated Universal Time



1 Introduction
In the year 2010, Aalto University (formerly Helsinki University of Technology)
began the development of its very own Aalto-1 nanosatellite by offering students of
various backgrounds opportunities to participate in the space engineering project.
Six years later, Aalto-1 is set to launch to low Earth orbit, thus effectively ushering
Finland into the space age. Apart from the novel scientific instrumentation aboard
the small nanosatellite, the arguably most valuable gift of Aalto-1 is the experience
and inspiration it has granted its participants, both scholarly and professional, since
the inception of the project. By the time of this report, the project participants have
already founded two companies - ICEYE and Reaktor Space Labs - while many of
the students have ventured into other high technology industries.

In late 2017, Aalto University is set to launch the Suomi 100 centenary satellite to
celebrate a hundred years of Finnish independence. This nanosatellite, spearheaded
by the Aalto Space Physics research group and Professor Esa Kallio, is planned
to be fitted with a HF/MF AM radio receiver. Apart from probing near-Earth
space weather, the AM radio will be capable of receiving man-made radio transmis-
sions around frequencies of 1-5 MHz. These frequency bands are heavily populated
worldwide by both professional and amateur operators alike [8], so the prospect of
listening to these transmissions from low Earth orbit can provide interesting insight
into ionospheric radio propagation and traffic mapping. The Aalto Space Physics
group intends to study this by so-called ray tracing, in which the paths of radio
signals are numerically computed in a realistic ionospheric background.

The aim of this report is to study the feasibility of numerical ray tracing in the
context of Suomi 100, and to present results necessary for the development of our
own ray tracing software. This report intends to address the following three areas:

1. Cold plasma theory, and its bearing on ionospheric ray propagation

2. Commercial ray tracing software, such as Proplab Pro 3, and their usability
in the context of the Suomi 100 mission

3. Development of our own ray tracing software, and the models required for the
purposes of Suomi 100 ray tracing

The development of our own ray tracing software relies on previous work of Rian van
Gijlswijk, who formulated a ray tracing program for studying a beacon localization
concept on Mars [10]. This background, compounded by commercial ray tracer issues
presented in this report, gave us the idea of using our own software for the Suomi
100 mission. However, many different ray tracing methods have been developed for
various simplified scenarios, and recognizing limitations of these specific methods is
essential for developing a working ray tracer. By performing analysis of cold plasma
theory and published results, we intend to propose possible improvements to future
versions of our code.



2

2 Background

2.1 Cold plasma properties

Plasmas are quasineutral gases that consist largely of free ionized particles and
electrons. Because plasmas contain a large amount of free charges, they interact
strongly with electromagnetic fields in addition to acting as sources for the fields
themselves. Cold plasmas, of which the terrestrial ionosphere is a prime example,
are of sufficiently low temperature so that thermal effects on wave propagation can
be neglected, and cold plasma models generally assume the temperature to be zero.
This is because the thermal speeds

√
2kBT/m of the plasma particles are much

smaller than the phase speeds of the wave phenomena in the plasma [16]. For
discussion about the effects of warm plasmas, see [6]. For the Earth’s ionosphere,
temperature values are typically of the order ∼ 103 K [15].

When a static cold plasma is perturbed, it starts to oscillate at a characteristic
frequency known as the plasma frequency. Neglecting the smaller oscillatory motion
of the greatly more massive ions, the plasma frequency fp is given in hertz by

fp =
1

2π

√
Ne2

ε0me

(2.1)

where N is the plasma electron density and me the electron mass.
A single charged particle immersed in a static and homogeneous magnetic field

B is accelerated by the Lorentz force [11], described by the classical equation of
motion

m
dv

dt
= q (v ×B) . (2.2)

Solving equation 2.2 yields a circular cyclotron trajectory around a guiding center,
which moves at a constant velocity parallel to the magnetic field lines [16]. The
charged particle gyrates around the guiding center at the cyclotron frequency Ω,
given in radians per second by

Ω =
|q|B
m

. (2.3)

Since the proton mass is circa 1800 times higher than that of electrons, the cyclotron
frequency is consequently around 1800 times higher for electrons.

Another important plasma parameter for wave propagation is the collision fre-
quency ν. Radio waves in the ionosphere undergo some attenuation because the
motions of electrons and ions are damped through collisions with neutrals and other
charged particles. Throughout the ionosphere, the number density of neutrals is
much greater than that of ions. Below about 100 km the collisions between elec-
trons and neutrals dominate, but above this contributions from ions need to be
considered as well [6] for ν . Furthermore, the lighter electrons are accelerated signi-
ficantly more than the heavier ions by the propagating wave, which is why electrons
are assumed collide more frequently and thus contribute more into wave attenu-
ation. However, the propagation properties of radio waves are not very sensitive to
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the exact value of ν, and in this report we focus mostly on a collisionless ray tracing
method.

For future reference, the following plasma parameters are introduced for a plane
wave in an ’electrons only’ plasma:

X =
f 2
p

f 2
, (2.4)

Y =
Ωe

ω
=

Ωe

2πf
, (2.5)

Z =
ν

ω
=

ν

2πf
, (2.6)

U = 1− iZ. (2.7)

where the subscript e denotes values for electrons. The angular frequency ω of
the plane wave is discussed in chapter 2.3. Some authors, such as Budden [6] and
Koskinen [16], give the more general parameter values where ion contributions are
allowed for. In this report, we focus on developing a simplified ’electrons only’ ray
tracing algorithm, but the methods can quite comfortably be extended to include
ions as well.

2.2 The terrestrial ionosphere

The terrestrial ionosphere refers to the upper atmosphere of Earth, where solar ra-
diation maintains a significantly high ionization of the otherwise neutral particles.
The particles are ionized by photons of the UV range and higher, referred to as
photoionization, and energetic particles, referred to as impact ionization. The iono-
sphere is very dynamic in nature, and the local ionospheric constitution has a strong
dependence on solar activity, altitude, time of day and geographic location. The
ionosphere has for long been know to significantly affect radio signal propagation,
which is why it is imperative to model the ionosphere and its essential characteristics
by some means for ray tracing. The prospect of utilizing the International Reference
Ionosphere for this purpose is explored in chapter 3.4.

In situ observations with both airborne and ground-based remote sensing in-
struments have revealed a layered substructure of the terrestrial ionosphere. The
ionosphere is thus conventionally divided into three or four regions [23]: The D re-
gion (typically below 90 km), the E region (typically between 90 and 130 km) and
the F region (above 130 km). The F region is usually divided further into the F1

and F2 regions, of which the latter contains the maximum electron density of the
ionosphere. The so-called F2 critical frequency denotes the plasma frequency (Eq.
2.1) corresponding to the maximum electron density of that location. Consequently,
the F2 critical frequency marks the highest possible skywave frequency for near ver-
tical incidence, and helps dictate the maximum usable frequency (MUF) between
two transceivers. The F2 critical frequency ranges between 1-16 MHz, depending on
location and time of day, and is usually between 2-5 MHz near Finland. [12]

The collisions between electrons and neutrals in the ionosphere have an effect on
radio signal propagation, and introduces damping of the signal amplitude. In this
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Figure 1: Typical electron density profile of the terrestrial ionosphere as a function
of altitude. [15]

report, the effects of ion collisions are neglected. In [23], Schunk and Nagy present
the electron-nitrogen and electron-oxygen collision frequency dependencies as given
in Equations 2.8-2.9:

νN2 = 2.33× 10−17NN2

(
1− 1.21× 10−4Te

)
Te [Hz], (2.8)

νO2 = 1.82× 10−16NO2

(
1 + 3.6× 10−2

√
Te

)√
Te [Hz]. (2.9)

In Eqs. 2.8-2.9 the electron temperatures Te are given in Kelvin, and the particle
densities in m-3. For example, using typical ionospheric values of Te = 1000 K,
NN2 = 1018 m-3 and NO2 = 1018 m-3 at 100 km altitude [12], the neutral collision
frequencies are given by

νN2 ≈ 20× 103 Hz, (2.10)
νO2 ≈ 12× 103 Hz. (2.11)

We attempt to obtain an effective neutral collision frequency νeff by calculating
the weighted average of the collision frequencies as

νeff =
NN2νN2 +NO2νO2

NN2 +NO2

. (2.12)
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For the example above, this produces the effective collision frequency

νeff ≈ 16× 103 Hz. (2.13)

For 1-5 MHz radio frequencies, inserting this into equation 2.6 yields an estimate
for the parameter Z at 100 km altitude

ZHF/MF ≈ ×10−3. (2.14)

Figure 2: Typical density of neutrals in Earth’s ionosphere as a function of altitude.
[12]

2.3 Electrodynamics and plane waves

The connection between classical electromagnetic fields and their sources are dic-
tated by Maxwell’s equations. When studying the fields in a medium (such as a cold
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magnetoplasma), it is useful to present them using the auxiliary fields as [16]

∇ ·D = ρf , (2.15)
∇ ·B = 0, (2.16)

∇× E = −∂B

∂t
, (2.17)

∇×H = jf +
∂D

∂t
. (2.18)

In addition, electric and magnetic fields and their auxiliary fields are linked by the
consitutive relations

D = ε̄E, (2.19)
B = µ̄H. (2.20)

In cold plasma theory, the magnetic permeability µ̄ is usually approximated
as being the scalar µ0. However, an external magnetic background (such as the
geomagnetic field) introduces inevitable anisotropy in the plasma, which manifests
itself in the electric permittivity ε̄. Hence in an anisotropic plasma, the electric
permittivity is generally not a scalar, but a second-order tensor with off-diagonal
elements. This anisotropy is accountable for the characteristic wave propagation in
a cold plasma, and is of general interest in ray tracing applications. See [6] for an
example of permittivity tensor elements.

A steady-state solution to Maxwell’s equations without sources is the familiar
plane wave solution, which represents a uniform plane propagating in the direction
of the wave normal k with the angular frequency ω:

E(r, t) = Ẽei(k·r−ωt), (2.21)

B(r, t) = B̃ei(k·r−ωt). (2.22)

Here Ẽ and B̃ are constant complex vectors, and the physical measurable fields are
represented by the real parts of Eqs. 2.21-2.22. In the proposed ray tracer, the
traced waves are modelled as electromagnetic plane waves, but future versions of
the code may include a more physical treatment of antennas in the near/far field.
For an overview of antenna radiation in a cold magnetoplasma, see [5].

In a magnetized cold plasma, the plane waves demonstrate rather unintuitive
behaviour, and it is prudent to lay out some key characteristics immediately [6]:

• The wave normal k is real for non-evanescent waves (see chapter 2.4) in a
collisionless plasma, but even non-evanescent wave normals k exhibit an ima-
ginary part if collisions are included. The imaginary part of k introduce signal
attenuation.

• The plane wave fields D, B and H are always pointing perpendicular to the
wave normal k, and are thus always transverse.

• The plane wave electric field E is also strictly perpendicular (transverse) if the
plasma is isotropic, but...
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• in an anisotropic plasma, E is not generally transverse, and may exhibit lon-
gitudinal field components.

• The phase velocity vp of a cold plasma wave usually exceeds the speed of light,
and can even be infinite in some cases.

• However, the group velocity vg is never greater than the speed of light.

These properties can be concluded from Maxwell’s equations and cold plasma
theory, and are demonstrated in [6]. The anisotropic longitudanility of the electric
field has important implications for ray tracing, as consequently the wave group ve-
locity is generally not parallel to the wave normal. Furthermore, including collisions
introduces a complex wave normal, and complicates ray tracing significantly. These
topics are discussed in chapter 2.5.

2.4 Wave propagation in a cold magnetoplasma

The wave normal number depends, by definition, on the refractive index n as

k =
ωn

c
. (2.23)

In a collisional cold magnetoplasma, the complex refractive index is given by the all-
important Appleton-Hartree formula (also known as the Appleton-Lassen formula)
[6]:

n2 = 1− X (U −X)

U (U −X)− 1
2
Y 2 sin2 θ + SR

, (2.24)

SR = ±
[

1

4
Y 4 sin4 θ + Y 2 (U −X)2 cos2 θ

] 1
2

. (2.25)

Here θ denotes the angle between the wave normal and the background magnetic
field B0. The value of the refractive index thus depends not only on the wave fre-
quency, but the wave direction as well. This has an important bearing on refraction
calculations, since the angle of refraction cannot subsequently be solved independ-
ently of the refractive index.

If n2 is negative and real, the refractive index n is purely imaginary. This case
appears to represent a wave travelling with infinite wave velocity, and is called
an ’evanescent’ wave. Non-evanescent waves, for which n has a real component,
represent propagating waves and are thus of key interest in ray tracing. In lossy
media where collisions are included, non-evanescent waves demonstrate complex n
with a real component, which represents propagating waves with attenuation [6].

Upon entering the ionosphere, a radio wave will be ’split’ into two character-
istically polarised magnetoionic wave modes, known as the ordinary (O) and ex-
traordinary (X) modes [4]. In the case of transverse propagation (θ = π

2
), the

O-mode is intuitively understood as a wave whose electric vector is parallel to the
magnetic background, while the X-mode exhibits an electric vector perpendicular
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to the background. Moreover, for longitudinal propagation (θ = 0 or π) the charac-
teristic modes are known as R- and L-modes [16]. For an arbitrary value of θ, the
characteristic modes are defined using the parameter SR (Eq. 2.25) as follows [6]:{

Ordinary (O) if Re(SR) > 0,

Extraordinary (X) if Re(SR) < 0.

Our ray tracer should thus trace both the O- and X-modes for a given transmission
direction. Although it is possible that the incident wave is polarised so that only
one of the characteristic modes is formed, the ray tracer considers both modes by
default.

For computing refracted wave directions, one should use the real part of the com-
plex refractive index Re(n) = µ (see chapter 3.7). A refraction test code written in
C11 incorporates standard libraries for complex arithmetic, which in turn eliminates
the need for any analytic expressions for the real and imaginary parts of n.

When a plane wave propagates in an anisotropic plasma, the wave exhibits po-
larisation characteristic to the corresponding wave mode. Let us use the following
Cartesian coordinate system: z is parallel to the wave normal k, while x and y are
perpendicular to propagation. See Appendix A.2 for how the system is defined. In
this system, the transverse and longitudinal polarisations are given respectively by
[6]:

ρ⊥ =
Ey
Ex

= −Hx

Hy

=
i
(
1
2
Y 2 sin2 θ − SR

)
Y (U −X) cos θ

, (2.26)

ρ‖ =
Ez
Ex

= −ρ⊥
iY sin θ(n2 − 1)

U −X
. (2.27)

It is important to notice, that the wave may exhibit a non-zero longitudinal electric
field component Ez. This plays a significant role for ray propagation discussed in
the next chapter.

2.5 The ray

The energy flux of an electromagnetic field is given by the Poynting vector

Π = E×H. (2.28)

Let us now evaluate the time average Πav of the Poynting vector for a progressive
plane wave in a cold magnetoplasma. Inserting Eqs. 2.21 and 2.22 into Eq. 2.28,
and noting that the real parts of the plane wave fields give the physical fields, the
plane wave Poynting vector is given by

Π = Re(Ẽei(k·r−ωt))×Re(H̃ei(k·r−ωt)) (2.29)

=
1

4

[(
Ẽei(k·r−ωt) + Ẽ∗e−i(k·r−ωt)

)
×
(
H̃ei(k·r−ωt) + H̃∗e−i(k·r−ωt)

)]
(2.30)

=
1

4

[
(Ẽ× H̃∗) + (Ẽ∗ × H̃) + (Ẽ× H̃)e2i(k·r−ωt) + (Ẽ∗ × H̃∗)e−2i(k·r−ωt)

]
.

(2.31)
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The last two terms inside the brackets of Eq. 2.31 are oscillatory terms and average
zero over an oscillation period. Hence, the remaining two terms give the time-
averaged Poynting vector [6]:

Πav =
1

4
(Ẽ× H̃∗ + Ẽ∗ × H̃) =

1

2
Re(Ẽ× H̃∗). (2.32)

In a collisionless plasma (i.e. where Z = 0), the vector Πav gives the direction in
which a progressive plane wave propagates energy, and is of considerable interest
for ionospheric radio applications. The so-called radio ray direction is given by the
direction of Eq. 2.32 [6]. It is however worth noting, that the ray direction is not
necessarily parallel to the wave normal: In free space (X = 0) or in an unmagnetized
cold plasma (Y = 0), the ray vector g is always in the same direction as k, but for
an anisotropic medium this does not generally hold.

This property can be demonstrated using the polarisation equations presented in
chapter 2.4. From the equations for the electric field components, one can observe
that in a magnetoplasma the electric field may have a longitudinal component in
the direction of the wave normal. This longitudinal component consequently causes
the cross product in Eq. 2.32 to exhibit a transverse component perpendicular to
wave propagation. The evaluated components of Πav in a general magnetoplasma
(where collisions are allowed for) can be expressed by [6]:

Πx = −iY sin θ

4Z0

nρ∗⊥
(
n∗

2 − 1
)

U∗ −X
− n∗ρ⊥ (n2 − 1)

U −X

 |Ex|2 , (2.33)

Πy =
iY sin θρ⊥ρ

∗
⊥

4Z0

(n2 − 1)n∗

U −X
−

(
n∗

2 − 1
)
n

U∗ −X

 |Ex|2 , (2.34)

Πz =
1

4Z0

(n+ n∗) (1 + ρ⊥ρ
∗
⊥) |Ex|2 . (2.35)

Here Z0 denotes the impedance of free space ≈ 376.73 Ω. When collisions are
neglected (i.e. U = U∗ = 1), the refractive index n is purely real (or purely imaginary
for an evanescent wave). Consequently, the transverse polarisation ρ⊥ is purely
imaginary. This special case is of interest in our ray tracing program for Suomi
100, as this approximation allows for greatly simplified ray tracing equations. The
collisionless components can be written [6]:

Πx =
iρ⊥n(n2 − 1)Y sin θ

2Z0(1−X)
|Ex|2 , (2.36)

Πy = 0, (2.37)

Πz =
n

2Z0

(1− ρ2⊥) |Ex|2 . (2.38)

These equations show that the ray is in the plane defined by the Earth’s magnetic
field, which in the used coordinate system lies in the xz-plane, and the wave normal,
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which in the same coordinate system points in the +z-direction (see Appendix A.2).
Moreover, in a collisionless plasma, the ray makes an angle α with the wave normal
(c.f. Fig. 3):

α = arctan

± Y sin θ cos θ(n2 − 1){
1
4
Y 2 sin4 θ + (1−X)2 cos2 θ

} 1
2

 (2.39)

where the + sign applies for the ordinary wave and the − sign for the extraordinary
wave. The following sign convention is used: α is positive when it is in the same
sense as θ, the angle measured from the wave normal to the magnetic field. For
further information, see [7] and Appendix C.

Figure 3: Plane geometric representation of the ray. The angle α denotes the angle
between the ray and the wave normal, while β denotes the angle between the ray
and the local magnetic field. All three vectors lie in the same plane. [6]

In a lossy medium (Z 6= 0) it is necessary to use a complex analogue of Πav that
has the same direction as the complex ray. This analogue is given by the bilinear
concomitant vector W

W = E×H + E×H (2.40)

where E and H represent the adjoint fields, given by Altman and Suchy in [2]. For
further discussion and theory, refer to [6] and [2]. It is however possible to circumvent
the necessity of a complex ray method if the medium is only slightly collisional, in
which case it suffices to consider so-called real pseudo rays. This is analysed further
in chapter 3.6.
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2.6 Ray reciprocity and reversibility

The concept of ray path reversibility means, that if a transmitted ray takes a path
from A to B, then transmitting an identical ray in the opposite direction from
B results in the ray taking an identical path to A [6]. This property is vital to
the Suomi 100 mission, because if we intend to conclude transmitter positions by
backtracing rays from the satellite, ray reversibility must be assumed. However,
physical ray path reversibility is not always true for a cold magnetoplasma, and
significant physical breakdown of reversibility is possible in some cases. In this
chapter we intend to convince, that for the frequency bands employed by Suomi
100, ray path reversibility should hold to good fidelity.

A related concept to reversibility is reciprocity, which is a more general statement
of the electromagnetic fields and their interchangeability in a pair of antennas. In
simple terms, if the input current I1 in antenna A induces the open-circuit voltage
V2 in antenna B, and an input current I2 equal to I1 in antenna B induces the
same open-circuit voltage V1 = V2 in antenna A, the pair of antennas are said to be
reciprocal [2]. This is expressed more formally by

V o.c.
1 = V o.c.

2 when I2(0) = I1(0). (2.41)

Non-reciprocity is common in ionospheric communications, and is caused by plasma
anisotropy and polarisations of the antennas. The reciprocity (or non-reciprocity)
of the traced rays is however not very interesting in the scope of Suomi 100, as it
does not bear significance on the ray tracing study. This is because reversible ray
paths may still be non-reciprocal [5] [2].

Most ray tracing models compute ray paths independently from the other ray
components, but in the ionosphere it is possible that that the individual components
produced at refraction modify one another, essentially creating a coupled system.
An overlook of coupled wave equations are presented in [6], where it is argued that
this coupling is responsible for ray path non-reversibility. This problem is further
studied and demonstrated in [24], which gives examples of computed non-reversible
ray paths in a plane-stratified ionosphere when the operating frequency is below the
gyrofrequency.

The effects of coupling on reversibility are studied in [24] for frequencies 300-900
kHz, which is well below the operating frequencies of Suomi 100. For 900 kHz,
effects of ray path non-reversibility are barely noticeable, as can be seen in Figure 4.
It has been argued that the departure from exact reversibility is small in practical
cases [24].

These results suggest that the ray paths traced in our code should be reversible,
and that ray path reversibility can be assumed for all practical purposes of the
mission. It is however completely possible that ray tracing numerics introduces
non-physical breakdown of reversibility. For a thorough discourse on reciprocity
and reversibility, see [2].
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Figure 4: Non-reversible paths for 300 kHz (left) and 900 kHz (right). The con-
tinuous curve represents the coupled ray path (non-reversible), while the chain line
is the non-coupled (reversible) path. The vertical axis is the ray height, while the
horizontal axis represents the horizontal displacement in the plane of incidence for
a vertical projection. [24]
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3 Methods

3.1 Ray tracing

In physics, ray tracing describes a collection of computational methods in which
ray paths are traced in an arbitrary medium of varying propagation characteristics.
The subject of ray tracing has several useful applications in varying technologies:
For instance in skywave radio communications, ray tracing allows the estimation of
usable frequencies and broadcast coverage maps, to name a few. In the context of
Suomi 100, the method of radio ray tracing is sought for the purpose of mapping
HF/MF radio traffic on Earth: Owing to the approximate reversibility of ray paths,
if the satellite receives an AM signal of a known frequency, it is in practice possible
to backtrace the ray path to the original sender. Furthermore, an orbital HF/MF
receiver enables novel studies into ionospheric physics, and ray tracing between a
known transmitter might provide new insight into ionospheric modelling.

In this report, we formulate a numerical Poynting vector method for ray tracing
a single frequency in a static, anisotropic three-dimensional discretized grid. The
ray tracing equations are not coupled, meaning that the refracted waves propagate
independently of one another. For an analysis of coupled wave equations, see [6].
Furthermore, the effects of a small collision frequency ν is accounted for through a
pseudo real ray method. The methods described in this report consider an ’electrons
only’ plasma, but the methods can quite comfortably be extended to include ions
as well. Limitations and caveats of the proposed ray tracing methods are presented
in chapter 4.5.

3.2 Proplab Pro 3

Proplab Pro version 3 is a commercial radio communication software tool released by
Solar Terrestrial Dispatch in the year 2007. Proplab evaluates a three-dimensional
worldwide ionosphere from the IRI 2007 model, and is capable of simulating HF/MF
radio ray propagation in a geographic simulation domain. For an official overview
of Proplab, see [25].

In the context of the work presented in this report, Proplab is studied for three
purposes:

1. Evaluate feasibility of using Proplab for ray tracing in Suomi 100.

2. Provide an estimate of ray tracing options that practically affect the perform-
ance of our own ray tracer.

3. Serve as a source of code validation for our own ray tracer.

The first item deserves special attention, since the aspect of studying simulated ray
path reversibility is enabled by Proplab. Unfortunately, the source code and inner
workings of Proplab are not public, leaving any users guessing what the software
actually is doing while ray tracing. This ’fatal flaw’ is the most significant factor
which ultimately led our team to begin the development of our own ray tracing
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software for the Suomi 100 project. An original ray tracer would allow its developers
to customize the ray tracing equations to desired complexity, and could possibly
allow us to test alternative approaches to ray tracing, ionospheric modelling and
ionospheric tomography. Nevertheless, one could expect that Proplab accounts for
the majority of contemporary ionospheric ray tracing expertise, allowing our team
to eventually test our own code by comparing its results to Proplab.

3.3 Mars ray tracer

The predecessor to our Finland100 ray tracer is the ’Mars ray tracer’, developed by
van Gijlswijk as a part of his Master’s thesis on a Mars beacon localization concept
[10]. The ray tracer readily executes refraction calculations in a predetermined iono-
spheric profile, and improving on this program to a more generally applicable version
facilitates Suomi 100 ray tracing significantly. Some features and characteristics are
presented in Figure 5 with their counterparts in the proposed Suomi 100 ray tracer.
Clearly a few modifications to the original Mars ray tracer are necessary. Arguably

Figure 5: Comparison of the Mars ray tracer and the proposed Suomi 100 ray tracer
key properties.

the greatest modifications to the core setup are the global geographic coordinate
system and the three-dimensional grid, discussed in chapter 3.6. In terms of refrac-
tion physics, the inclusion of a magnetic background is a significant improvement as
it introduces realistic anisotropy in the medium. This anisotropy complicates ray
tracing somewhat, and the proposed numerical methods are presented in chapter
3.7.
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3.4 International Reference Ionosphere (IRI)

The International Reference Ionosphere is an ongoing project with the ultimate
ambition of modelling the terrestrial ionosphere to usable precision. The IRI model
allows radio operators to predict a realistic ionospheric composition for a certain
time and date, which in turn enables simulation of ionospheric radio propagation.
The latest version of IRI was released in the year 2012, and is sponsored by the
Committee on Space Research (COSPAR) in conjunction with the International
Union of Radio Sciences (URSI). For a more detailed overview of IRI, see [17].

IRI provides a handy tool for modelling a feasible ionospheric profile for our
Suomi 100 ray tracer. IRI can predict several necessary ionospheric parameters,
such as the electron density and temperature as a function of altitude, which sub-
sequently enables the evaluation of the parameters X and Z virtually anywhere
in the ionosphere. NASA has developed a web-based tool for computing IRI 2012
parameters, and can be accessed at [28]. For the purposes of this report, a web
scraping code programmed in Python 2.7 was created for studying a larger region
of IRI predictions. The source code for the program, titled ’IRIscraper 1.0’, can be
accessed at the Aalto University wiki [1]. The results of such a web scraping over
Finland in summertime are presented in chapter 4.3.

While the ray tracer is still in testing before the actual mission, utilizing the web
scraping tool is still practical, but when a larger geographic area needs to be covered
with sufficient resolution, the web scraping method may become impractical and
borderline illegal. The web scraping program sends a large amount of requests to the
servers at NASA, and a very intense scraping session could possibly be classified as a
form of denial-of-service (DoS). Fortunately, the IRI 2012 model is freely distributed
with an available source code in Fortran, which enables any user to compute IRI
predictions at their home computer. This alternative is strongly encouraged for
future development of the ray tracer, as an embedded IRI-module in the software
would allow the ray tracer to cover the entire world at an arbitrarily high resolution.

Figure 6: Example of IRI 2012 output of the electron densities as a function of
altitude. The profiles were computed near Helsinki at (60◦N, 23◦E), during midnight
in midwinter (left) and midday in midsummer (right). Note the different scales of
the vertical axes.
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3.5 Ideal magnetic dipole as geomagnetic background

The Earth’s intrinsic geomagnetic field is of exceedingly complex nature, and is
largely dynamic in both shape, orientation and magnitude. The solar wind interacts
with the Earth’s magnetosphere, and can cause geomagnetic storm events during
which the geomagnetic field is violently perturbed temporarily. For the sake of
simplicity, the ray tracer’s geomagnetic background is modelled as a static dipole
field with constant orientation and magnitude, given by

B0(r) = B0

(
RE

r

)3

[3 (m̂ · r̂) r̂− m̂] (3.1)

where B0 is the mean magnetic field strength at the magnetic equator at r = RE,
and m̂ is the magnetic dipole moment unit vector which points towards the South
Geomagnetic Pole. See figure 7 for illustration of the magnetic dipole field lines.
For derivation of the dipole field, see Appendix E. The NOAA 2015 World Mag-
netic Model [19] gives the geographic coordinates of the South Geomagnetic Pole as
(80.31◦S, 107.38◦E). This allows us to evaluate the magnetic dipole orientation in
the global coordinate system described in chapter 3.6:

m̂ =

x̂ŷ
ẑ

 =

cosλ cosψ
cosλ sinψ

sinλ

 (3.2)

=

cos (−80.31◦) cos (107.38◦)
cos (−80.31◦) sin (107.38◦)

sin (−80.31◦)

 (3.3)

≈

−0.05028
0.16063
−0.98573

 . (3.4)

B0 is given slightly different values by varying sources. In [15], Russell gives the
approximate value B0 ≈ 30.4 µT . By using these definitions with equations 3.1 and
2.3, the parameter Y can be determined anywhere in the simulated ionosphere.

3.6 Non-spherical ray tracing grid

For Suomi 100, we attempt to formulate a numerical ray tracing method in a quasi-
rectangular three-dimensional grid. The first version of the ray tracer is to consider
an ’electrons only’ type of plasma, as such a simplification allows most of the physical
behaviour to be accounted for. For this model, the grid cells need to be assigned
with the following local ionospheric quantities:

1. Electron number density N [m-3]

2. Local magnetic field strength B0 due to Earth’s dipole field [T]

3. Effective collision frequency νeff [1/s]
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Figure 7: Illustration of Earth’s dipole field. [18]

From these, the quantities X, Y and Z can be computed as defined in equations
2.4-2.6, from which the refractive index n can be evaluated for a given wave normal
direction.

In the Mars ray tracer developed by van Gijlswijk [10], the global Cartesian
coordinate system is oriented so, that positive z points towards the geographic (or
in the case of Mars, areographic) North Pole and positive y towards the Sun. For
our Suomi 100 ray tracer, this choice of coordinates is not practical if we wish
to determine grid cell positions in geographic coordinates (i.e. latitude, longitude
and altitude). Thus, we propose that our new ray tracer be programmed with
the following coordinate convention, hereafter referred to as the global (coordinate)
system:

• The origin is placed at the center of the Earth

• The positive z-axis intersects the geographic North Pole (90◦N, 0◦E)

• The positive x-axis intersects the equator at the Greenwich prime meridian
(0◦N, 0◦E)

• The positive y-axis intersects the equator at the 90th meridian east (0◦N,
90◦E)

This way the grid cell positions in the global system are determined for a given
latitude λ, longitude ψ and altitude h above the surface:

rcell =

xy
z

 = (RE + h)

cosλ cosψ
cosλ sinψ

sinλ

 . (3.5)
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The latitudes are defined so that northern latitudes are positive and southern ones
are negative. Similarly, eastern longitudes are positive and western ones negative.
This way the grid cell positions are given in the same coordinate system as the dipole
moment given in in chapter 3.5.

The grid cells are proposed to be stacked in a quasi-rectangular formation, with
the top faces pointing radially outward and the side faces pointing in the azimuthal
and polar directions. This is illustrated in Figure 8. The simulation domain is to be

Figure 8: Illustration of the quasi-cuboidal grid cells. The grid cell size is greatly
exaggerated. The spherical system vectors discussed in Appendix A.3 are also illus-
trated in the figure.

determined over a sufficiently large range of geographical coordinates in the vicinity
of the satellite. The results of such a grid initialized with IRI electron density values
are presented in chapter 4.3, for which a grid was computed over Finland and a
specific grid resolution.

For computing refractions, the electron density gradient needs to be calculated
numerically from the grid profile. Since the quasi-cuboidal cells are tiled next to one
another, the numerical gradient could be evaluated as

∇rN = A


∂N

∂h

∂N

∂ζ

∂N

∂χ

 (3.6)

where A represents the transformation given in equation A.14. The coordinates h,
ζ and χ refer to the spherical altitude and arc coordinates as explained in Appendix
A.3. The partial derivatives at a point (h, ζ, χ) could be approximated using a finite
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difference method as

∂N

∂h
≈ N(h+ ∆h, ζ, χ)−N(h−∆h, ζ, χ)

2∆h
(3.7)

∂N

∂ζ
≈ N(h, ζ + ∆ζ, χ)−N(h, ζ −∆ζ, χ)

2∆ζ
(3.8)

∂N

∂χ
≈ N(h, ζ, χ+ ∆χ)−N(h, ζ, χ−∆χ)

2∆χ
(3.9)

This method inevitably necessitates some caveats. Since the proposed grid is not
strictly rectangular but instead slightly curved, evaluating the numerical gradient by
directly applying a finite difference becomes inaccurate if the grid angular resolution
is too poor. This is a result of the grid coordinates being actually curvilinear, and has
to be accounted for if a more precise numerical gradient is required. Furthermore,
the gradient could possibly be assumed to be constant everywhere inside a grid cell,
but could alternatively be evaluated for every face of the cell. The latter method
might prove more viable due to its intuitive interpretation, but is more complex to
implement from a programming point of view.

3.7 Numerical ray tracing method for an anisotropic iono-
sphere

In an anisotropic and lossless plasma, the wave normal refraction can be solved from
the generalized Snell’s law, given in [27] by

d

dP

[
µk̂
]

=
1

k
∇rµ (3.10)

where P is the phase path and µ the real refractive index. For a Hamiltonian
treatment of Eq. 3.10, see [14]. In an anisotropic medium, the refractive index
gradient is not precisely parallel to the gradient of N , but in [7] Davies argues that
the effect is always less than 10−4 radians in the ionosphere. Hence, it can safely be
approximated that

∇rµ ‖ ∇rN. (3.11)

Let’s then orient our Cartesian frame so that z is parallel to the boundary normal
∇rN , while x forms the other vector in the plane of incidence. This transformation to
the ’plane of incidence’ system is explained in Appendix A.1. Thus, the x-component
of the wave unit normal is given by

kx = sin γ (3.12)

where γ is the angle between the wave normal and the boundary normal. Since
∂N
∂x

= ∂N
∂y

= 0, Equation 3.10 reduces in the x-direction to the familiar form of
Snell’s law

d

dP
[µ sin γ] = 0. (3.13)
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Equation 3.13 can be used to calculate the direction of the refracted wave normal
(or more accurately, the refraction angle):

µI sin γI = µT sin γT. (3.14)

Here the subscript I denotes ’incident’ and T ’transmitted’. It is worth noting,
that Equation 3.14 holds solely for a lossless medium - if losses are included, the
refractive index is complex, and subsequently the wave normal is also complex. It
was, however, demonstrated in [6] that if the refractive index n only has a small
imaginary part, the results with real pseudo rays are still fairly reliable. Equation
3.14 still provides a useful approximation if

−arg(n) = − arctan

(
Im(n)

Re(n)

)
< 10◦. (3.15)

Moreover, γT cannot in general be solved analytically (=independently of µT )
from equation 3.14 in an anisotropic medium, since the value for the refractive index
depends on the angle θ between the wave normal and the magnetic field. For our
ray tracer, we propose an iterative method in which the refraction angle is computed
recursively until satisfactory convergence is reached. The method is as such: When
a ray hits the boundary, the associated wave normal makes an angle γI with the
boundary normal and has a real refractive index µI. The boundary normal is chosen
so that it points away from the incident side of the boundary. If total reflection does
not occur, an initial guess for the transmission angle is then evaluated as

γT,0 = arcsin

[
µI sin γI

µT,0

]
(3.16)

where the initial refractive index is guessed as the isotropic refractive index

µT,0 =
√

1−XT. (3.17)

From the transmission angle, the refracted wave normal direction is calculated in
the ’plane of incidence’ system as

kT,i =

kx,Tky,T
kz,T

 =

sin γT,i
0

cos γT,i

 (3.18)

from which the angle θT can be calculated from the vector dot product

θT,i = arccos

[
kT,i ·BT

|kT,i| |BT|

]
= arccos

[
kT,i ·BT

|BT|

]
. (3.19)

After this, the real refractive index µT,i is computed from Eq. 2.24 for θT,i and the
corresponding propagation mode (X/O) is selected from Eq. 2.25, after which a new
iterated value for the transmission angle µT,i is evaluated as

γT,i+1 = arcsin

[
µI sin γI

µT,i

]
. (3.20)
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The next iteration step proceeds with computing a new value for the wave normal
(Eq. 3.18). The iteration is stopped once satisfactory convergence is reached. For in-
stance, one could study the relative difference between two consecutive transmission
angles

|γT,i+1 − γT,i|
γT,i+1

< tolerance (3.21)

or one could study the numeric error in Snell’s law (Eq. 3.14)

|µI sin γI − µT,i+1 sin γT,i+1| < tolerance. (3.22)

As mentioned before, it is possible to achieve total reflection for which no wave
is transmitted at refraction. This might be approximated to occur at the limit when
γT = π

2
, and this condition yields the critical angle of incidence γcI

γcI = arcsin

[
µT(γT = π

2
)

µI

]
. (3.23)

However, total reflection is not strictly determined by Eq. 3.23 because the refractive
index µT depends on the transmission angle γT. The critical angle γcI should then
be sought from the more general condition

γcI = arcsin

[
maxγT (µT sin γT)

µI

]
. (3.24)

Finding an approximate maximum value maxγT (µT sin γT) could be attempted by
simply computing the value of µT sin γT for a sufficiently large amount of values in
the interval

(
0 ≤ γT ≤ π

2

)
. Since the sine function sin γI is monotonically increasing

in the interval
(
0 ≤ γI ≤ π

2

)
, no solutions to Snell’s law (Eq. 3.14) exist for incident

angles larger than the critical angle given by Eq. 3.24. Hence, only the reflected
wave is formed at total reflection governed by these conditions.

If the incident angle is larger than or equal to γcI , total reflection occurs and the
reflected wave is traced. However, the critical angle is not unique for a boundary in
an anisotropic plasma, as the incident refractive index depends on the wave direction.
The reflection angle γR is not generally equal to the incident angle (as opposed to
an isotropic medium), and has to be iteratively solved like the transmission angle.
Now we use the equations with the incident plasma quantities instead, i.e.

µI sin γI = µR sin γR, (3.25)

kR,i =

kx,Rky,R
kz,R

 =

 sin γR,i
0

− cos γR,i,

 (3.26)

θR,i = arccos

[
kR,i ·BI

|kR,i| |BI|

]
= arccos

[
kR,i ·BI

|BI|

]
, (3.27)
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γR,i+1 = arcsin

[
µI sin γI

µR,i

]
. (3.28)

In other words, the ray tracer traces the transmitted wave unless total reflection
occurs, in which case the reflected wave is traced. It is appropriate to issue certain
caveats here. When a wave is refracted in an inhomogeneous plasma, both transmit-
ted and reflected waves are usually formed, but we simply assume the transmitted
wave to be more energetic and thus more interesting for ray tracing purposes. It
however might happen that the reflected wave has a high amplitude relative to its
transmitted counterpart, in which case tracing the reflected wave instead could be
justified. Transmission and reflection coefficient matrices for an anisotropic plasma
can be found in [6]. The prospect of implementing this feature in future versions of
the ray tracer could be considered.

Once the transmitted or reflected wave has been solved, the ray angle α is com-
puted from Equation 2.39 using the real refractive index. Finally, the ray unit vector
g is evaluated as

gx =

(
sinα

sin θ

)
Bx

|B|
+

(
cosα− sinα

tan θ

)
kx
|k|
, (3.29)

gy =

(
sinα

sin θ

)
By

|B|
+

(
cosα− sinα

tan θ

)
ky
|k|
, (3.30)

gz =

(
sinα

sin θ

)
Bz

|B|
+

(
cosα− sinα

tan θ

)
kz
|k|
, (3.31)

except for the singular case where the background magnetic field is parallel to the
wave normal, in which case the ray and wave normal are consequently parallel:

gx = kx, (3.32)
gy = ky, (3.33)
gz = kz. (3.34)

The derivation of the ray unit vector is presented in Appendix B. The resulting
ray is then propagated further until it hits the boundary of the grid cell, and is
refracted once more. In order to compute the refraction, it is necessary to trans-
form the magnetic fields into the system defined by the plane of incidence. This
transformation is presented in Appendix A.1. The transformation of k back into
the global system is presented in Appendix A.1. The architecture of the ray tracer
and refraction logic is clarified in Appendix D.

Results for an implementation of this numeric method (programmed in C11) is
presented in chapter 4.4. The aforementioned code, titled ’MatRay 1.0’, can be
accessed at the Aalto University wiki [1]. The simplifications and approximations
used in this ray tracing method inevitably cause some physical ray dynamics to be
omitted, at the benefit of faster computation. These inaccuracies and limitations
are discussed in chapter 4.5.
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Figure 9: Illustration of refraction at a sharp boundary. The incident ray gI hits
the boundary at some point of incidence where the outward boundary normal ∇N
is evaluated. The transmitted wave normal makes an angle α with the transmitted
ray g. Note that the incident and refracted angles are calculated between the waves
and the boundary normal, not between the rays and the boundary normal. Note,
that the ray vectors are not necessarily in the plane of incidence.
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4 Results

4.1 Ray path reversibility in Proplab

As explained in chapter 2.6, approximate ray path reversibility is implied for non-
coupled ray tracing. To better understand how this property behaves in ray tracing
software, the following test was performed in Proplab:

1. A transmitter at 400 km altitude above Rovaniemi transmits a radio ray of
some frequency, and the transmission direction is fine tuned until the ray hits
the receiver in Otaniemi. The test was also done for a transmitter above Oslo.

2. The test is done for frequencies between 1-10 MHz.

3. The received ray direction is reversed, and transmitted from Otaniemi towards
the original transmitter

4. The test is performed for two extreme scenarios: Midday in midsummer
(21.6.2015 11:00 UTC) and midnight in midwinter (21.12.2015 00:00 UTC).

These transmitter positions were chosen because they are sufficiently close to Otan-
iemi, and allow different propagation directions with respect to the magnetic back-
ground.

Some results for wintertime between Rovaniemi and Otaniemi are presented in
Figures 10 and 11. It can be seen that a high enough frequency is reversible, but
when the frequency becomes low enough the ray path is no longer reversible. For
the shown scenarios, the F2 critical frequency is around 2 MHz. In summertime,
non-reversibility occurs below 7 MHz. The most conspicuous feature of this non-
reversibility is that it also happens for an entirely non-collisional and isotropic model:
Including anisotropy and collisions only slightly changes the non-reversible frequen-
cies. The fact that Proplab ray paths are non-reversible even for an isotropic plasma
raises many questions about its ray tracing algorithms, and leads to suspicion that
the observed non-reversibility is caused by numerics rather than physics. Without
any clues to the actual equations and models used by Proplab, this non-reversibility
is completely inexplicable. These results suggest, that Proplab is not the best al-
ternative for Suomi 100 ray tracing, as it provides no explanations and verifiability
for its results.
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Figure 10: Ordinary ray reversibility test in midwinter for a magnetic and collisional
plasma with the Proplab Pro 3 software. The 10 MHz transmission to Otaniemi
traces a path to the receiver, and the reverse transmission (i.e. in the exact opposite
direction) from Otaniemi takes the same path to the satellite. The reverse path is
not shown in the figure due to indistinguishable proximity.

Figure 11: Ordinary ray reversibility test in midwinter for a magnetic and collisional
plasma with the Proplab Pro 3 software. The 3 MHz transmission from the satellite
400 km above Rovaniemi (left) traces a path to the ground station receiver in Otan-
iemi, but the reverse transmission from Otaniemi to the satellite above Rovaniemi
(right) diverges from the reversible path at 300 km altitude and misses the original
transmitter by several 10 km. Instead of penetrating the ionosphere and reaching
the satellite, the transmission is reflected at some 300 km altitude back towards the
ground, as can be seen in the figure to the right.
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4.2 Effects of collisions in Proplab

It was decided to study the effects of collisions in Proplab, as it could provide prac-
tical insight into the reliability of the pseudo-real ray method proposed for our own
ray tracer. Proplab allows the user to include (or exclude) both collisions and an-
isotropy from ray tracing computations, and although it is unclear how Proplab in
practice accounts for collisions, we expect that the used models allow for a prelim-
inary study of the methods proposed in this report.

For studying the effects of collisions, a test was devised in which a ray was
transmitted from Rovaniemi to Otaniemi using two dispersion models: Appleton-
Hartree with field and without collisions, and Appleton-Hartree with field and with
collisions. The test was done on 21.12.2015 00:00 UTC, for which IRI predicts a 2
MHZ F2 average critical frequency. The results are shown for 5 MHZ and 3 MHz
rays in Figure 12.

Figure 12: Comparison of collisional and non-collisional ray tracing in Proplab on
21.12.2015 00:00 UTC. The ray was transmitted from Rovaniemi at 400 km altitude
in the given direction (elevation and bearing) by finding a direction so that the ray
traced a path to Otaniemi. Ionosphere anisotropy was included in all ray tracings.

These results suggest that ionospheric collisions have a very small bearing on
the ray path, as is evidenced by the transmission directions being equal in both
cases. In chapter 2.2 it was argued that the parameter Z (Eq. 2.6) is at largest
around magnitude 10−3, further suggesting that the refractive index is mostly real
for ground-to-satellite transmissions. Although collisions seem to be negligible for
transmissions between Rovaniemi and Otaniemi, it might occur that transmissions
between another pair of transmitters experience significant ray path differences when
collisions are included. For instance, at lower latitudes the ionospheric collisions
frequencies are expected to be higher due to higher electron temperatures, which
might in turn result in a more imaginary refractive index.

Testing collisions contributions in a wider range of scenarios for 1-5 MHz is
not straightforward, because such low frequencies become evanescent in a thick
ionosphere. It should be considered to conduct a thorough analysis on how the
refractive index is affected by a realistic collision profile. This could be done by
predetermining an altitude profile for electron density, temperature and neutral
density, and computing the resulting altitude profile for the refractive index n when
Y=0. By excluding the background magnetic field, n is independent of the specific
wave direction, which would in turn allow one to determine an approximate refractive
index at any altitude without specifying any transmissions. Summa summarum, the
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acquired results suggest that the proposed pseudo-real ray tracing method should
be pursued further for the Suomi 100 mission.

4.3 Ionospheric profile comparison

The three-dimensional properties of the ionosphere were studied by sweeping IRI
altitude profiles over a range of longitudes and latitudes, during 21.07.2016 16:00
UTC. The sweeping was done from (60◦N, 20◦E) to (70◦N, 30◦E) with a 1◦ resolution
in both longitudinal and latitudinal direction. Electron densities were requested as
an altitude profile, ranging from 80 to 400 km with a 1 kilometer resolution. This
way, a profile for the IRI-predicted ionosphere directly above Finland was obtained.
The profiles were acquired by web scraping the web-based IRI 2012 model [28], and
writing the results to an ASCII text file for later analysis. A screenshot of the web
scraping program is presented in figure 13.

Figure 13: Screenshot of the IRI web scraping program’s user interface, and the
settings used for the data presented in this chapter.

Results of the 3D analysis using Matlab R2016 are presented below. Figures
14 and 15 show that the IRI-predicted ionosphere is not homogeneous at any alti-
tude, demonstrating that the ionosphere is not spherically stratified. Figure 16
demonstrates some conspicuous three-dimensional properties of the IRI-predicted
ionosphere, namely that the density gradients (which are normal to the isosurfaces)
can be locally horizontal. This is evidenced by the folded isosurface to the right
i figure 16. However, as can be seen from figure 6, the density profiles can vary
strongly with altitude and locally exhibit significant radial gradients.
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Figure 14: Surface plots of the electron density at altitudes 330 km (left) and 130
km (right), on July 21 2016 16:00 UTC as given by the IRI 2012 model.

Figure 15: Isocontour plots of the electron density at altitudes 330 km (left) and
130 km (right), on July 21 2016 16:00 UTC as given by the IRI 2012 model.
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Figure 16: Isosurface plots of the electron density for 1.0 × 1011 m-3 (left) and
2.4× 1011 m-3 (right), on July 21 2016 16:00 UTC as given by the IRI 2012 model.
The longitude and latitude arcs represent the geographic displacements along the
surface. All axes are scaled equally.
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4.4 Numerical refraction computations

In this chapter we study the results for an implementation of the numerical ray re-
fraction method presented in chapter 3.7. The code programmed in C11 computes
the ray direction after a single boundary refraction event, where the quantities X,
Y , Z and B0 directions are predetermined for both sides of the boundary. An incid-
ent wave normal kI and boundary normal ∇N are given in an arbitrary Cartesian
system, after which the program follows the refraction logic presented in Appendix
D to compute the ray unit vector g2 after refraction.

For the first test, convergence of the numerical method was studied in an an-
isotropic and collisionless medium. The transmission side parameters (denoted by
the subscript 2), kI and ∇N were initialized as presented in table 1. Refraction was
tested then for both O- and X-waves, and for incident refractive indices of 1.0 (=free
space), 0.5 (=thick layer of ionosphere) and 0.1 (=very thick layer of ionosphere).
All waves were incident at a 45◦ angle. The vector B0,2 was chosen to promote
non-transverse propagation of the waves, thus complicating refraction iteration.

X2 Y2 Z2 B0,2 kI ∇N
0.3139 0.2799 0 (1, 1, 1) (1, 0, 1) (0, 0, 1)

Table 1: Parameters used in collisionless refraction analysis.

The stopping conditions of the iteration were defined as follows:

Return γT if


|γT,i+1−γT,i|

γT,i+1
< 10−6

AND
|µI sin γI − µT,i+1 sin γT,i+1| < 10−10

Results of this anisotropic and collisionless refraction iteration are presented in
Figure 17. From the results, a number of observations can be made. First of all, the
initial guess using an isotropic refractive index usually gives refraction angles close
to the actual value. The most extreme breakdown of this observation can be seen
when an X-wave refracts from free space (n1 = 1), and the initial isotropic refraction
angle deviates by almost 10◦ from the final iterated refraction angle. It must be
noted however, that the parameter values used in table 1 demonstrate typical values
for a f ≈ 4 MHz wave propagating in the F2 layer with a critical frequency of
≈ 2.2 MHz. Hence the refraction from free space directly to the thickest F2 layer
is not realistic, since the refraction is bound to happen gradually through smaller
transitions. Nevertheless, this clearly demonstrates the importance of including
anisotropy in the refraction calculations, as it can affect the resulting refraction
angle significantly.

Furthermore, it can be noted that the iteration converges quite rapidly to the
correct refraction angle, and usually the convergence proceeds to adequate preci-
sion after just two iteration steps. Moreover, sufficient numeric precision is usually
reached after five iterations, while the most extreme refractions still seem to take
less than ten iterations. While this may not be completely representative of the
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most complicated refraction events that might occur in the finished ray tracer, these
results do assure of the applicability of the proposed numeric method in nominal
situations.

The 64-bit double-precision floating point data types used in C11 and Matlab
are structured to 8 bytes of storage size, resulting in 16 decimal digits according to
the IEEE 754 standard [13]. Consequently, lowering the stop condition tolerances
to arbitrarily low values will not increase the accuracy of iteration after a certain
threshold. The observant reader might notice that the absolute errors given in figure
17 are larger than the specified stop condition tolerance - this discrepancy is most
likely caused by the test program not printing all the decimals of the angle. This
demonstrates the effects of floating-point representations, and that defining a certain
stop condition does not automatically result in the desired iteration precision.

In the next part of the test we decided to study the effects of collisions on
the reliability of the pseudo-real ray method, by computing the argument of the
refractive index presented in Eq. 3.15. This was done by computing the refractive
index n (Eq. 2.24) for a set of realistic extremes of X, Y and Z. The refractive
index was then computed for propagation angles θ between 0 and π, and the resulting
−arg(n) are presented in Appendix G.

From the graphs in Appendix G, a number of observations must be made. Al-
though the ordinary wave argument is in all tested cases well below the 10◦ limit,
the extraordinary wave refractive index may be almost entirely imaginary in the
same situations. Although the most extreme cases represent near-resonance scen-
arios (X ≈ 1 or Y ≈ 1), it is worth noting that while the refractive index can be
mostly real for some propagation directions, it may be mostly imaginary in other
propagation directions. This has a significant bearing on the proposed pseudo-real
ray tracing method. It is hence recommended that the Suomi 100 ray tracer also
evaluates the refractive index arguments, and warns the user when the argument
becomes too high in order to avoid unrealistic ray paths.
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Figure 17: Convergence of the numerical refraction method in an anisotropic and
collisionless ionosphere. The horizontal axis presents how many iterations have
been needed to evaluate the refraction angle given by the vertical axis. Here
abs(difference) denotes the absolute error in Snell’s law for the last iterated value
(Eq. 3.22).
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4.5 Limitations of the numerical method

The numerical pseudo-real Poynting vector method proposed in this report is the
result of a number of simplifications that make ray tracing computations simpler
and faster, but some of these simplifications may lead to unrealistic ray paths that
would not come about in a more general model. In this report, we have done our
best to justify the simplifications, and if necessary underline their shortcomings,
based on both literary sources and numerical analysis presented in this report. At
this point, it is worthwhile to point out some inevitable limitations of the proposed
method, so that future versions of the ray tracer may be developed to account for
these phenomena.

The term lateral deviation refers to the phenomenon of rays being displaced out
of the plane of incidence. While our ray tracer does account for this by computing
the ray vector direction after refraction using Eqs. 3.29-3.31, the boundary normal
is so far simplified as being parallel to the density gradient, resulting in the refracted
waves always being in the plane of incidence (defined by the incident wave normal
and the density gradient). Anisotropy causes the refractive index gradient ∇rµ to
to be slightly displaced from the density gradient direction, and accounting for this
might introduce more physical ray paths. However, Davies argues in [7] that this
effect is quite negligible, although he does not specify the conditions for when the
effects may become significant.

Furthermore, it was shown in chapter 4.5 that the pseudo real approximation
can break down in ionospheric propagation. To better account for these cases, it
might be worth investigating a more general ray tracing method for complex rays.
This might for example involve the bilinear concomitant vector presented in chapter
2.4, or may incorporate a Hamiltonian ray tracing treatment (see [6]).

Another simplification employed by the proposed ray tracer, is that it models
radio transmissions as consisting of a single constant frequency. In reality, the signal
is modulated to consist of a spectrum of frequencies, i.e. a wave packet - for example,
an AM signal is usually created by modulating the amplitude of a sinusoidal carrier
wave with an input signal. The single frequency approach used by our ray tracer can
be interpreted as tracing the carrier wave of operating frequency f . For an overview
of wave packets, see [6].

Furthermore, the proposed ray tracer employs a static and relatively smooth
ionospheric background. A more realistic time-varying medium inevitably intro-
duces new ray dynamics that is not present in the proposed method. For example, in
a time-varying medium the ray frequency changes during propagation [9]. Although
modelling the ionosphere as a static background might be justified for nominal ra-
dio transmissions, including a dynamic background might prove interesting when
studying ray propagation in more ’violent’ scenarios, such as geomagnetic storms or
other planets.

While the polarisation formulae given in chapter 2.4 allow the evaluation of the
electromagnetic field component ratios associated with the propagating wave, the
proposed ray tracer is still just that - a ray approximation that does not take into
account the ray phase or its field components. A more general full wave method
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would allow tracing the field dynamics and its consequences, such as the reflection
and transmission coefficients presented in [6] and subsequent signal amplitudes. For-
tunately, it is argued in [6] and [24] that full wave methods become necessary only
below 1 MHz for terrestrial applications, because the ionospheric background would
change considerably within one wavelength for such low ray frequencies. However,
if the ray tracer is planned to be utilized for studying radio propagation in other
environments (such as any of the other planets in the Solar System), it might be
worth considering how a full wave tracer would fare against a more simple ray tracer
presented in this report.
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5 Summary and discussion
In this report we summarized basic ionospheric ray tracing principles from cold
plasma theory, and studied a variety of published computational ray tracing im-
plementations. We concluded that a number of publications on the subject sup-
port practical ray path reversibility, suggesting that the prospect of studying global
HF/MF transmissions through ray inversion is feasible for the Suomi 100 mission.
Furthermore, it was observed that the commercial ray tracing software previously
nominated for this purpose, Proplab Pro 3, exhibits inexplicable ray path non-
reversibility even in simplified isotropic simulations. Due to the source code of
Proplab not being public, the cause of the observed non-reversibility could not be
explained, prompting us to develop a ray tracing program of our own.

A majority of this report focuses on elaborating the key principles of the pro-
posed ray tracer. We laid out characteristics of the simulated ionospheric medium,
the ray refraction and propagation methodology, a rudimentary software architec-
ture, and implemented a test code written in C11 to analyze the feasibility of our
proposed iterative refraction method. We observed that the tried iterative refrac-
tion calculations converge in less than ten iterations, and that the resulting refracted
wave directions satisfy Snell’s law to less than a 10−6 absolute error.

We also conducted a brief analysis of the reliability of the proposed pseudo-real
ray approach. Ray tracings performed in Proplab with both collisional and non-
collisional ionospheres exhibited barely any differences between each other, giving
the impression that collisions have at best a very minute effect on ray paths. This
conclusion was also found supported by ray tracing theory [6]. It was also decided
to study the refractive index argument −arg(n) for some extreme parameter values,
and it was observed that the pseudo-real method may break down in some of these
scenarios, more prominently for the X-wave than the O-wave.

A great deal of the work was concentrated with distinguishing possible limitations
and desirable improvements to the proposed method (see chapter 4.5). The ray
tracer methodology presented in this report is at best a ’work in progress’, and it
must be recognized that some vital properties necessary for a functional ray tracer
have barely been touched upon. The most pressing matters in this regard are listed
below:

1. 3D grid implementation. The exact solution of how to set up the possible
grid cells, and how to recognize ray collisions with the grid cell boundaries,
is still an open question. It might even be worth considering to implement a
linear interpolation of adjacent grid cells and their corresponding ionospheric
quantities, which could possibly enable the ray tracer to propagate the rays in
predetermined step lengths and compute refraction parameters anywhere in
the domain.

2. Realistic evaluation of collision frequency profiles. In this report, it was briefly
stated that the effective collision frequency ν is expected to be of magnitude
104 Hz or less, but this conclusion is conspicuously lackluster and of no use if
the ray tracer is planned to be utilized in more exotic environments outside
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Earth. It is thus imperative, that a more general collision frequency profile is
conceived from available ionospheric quantities.

3. Signal attenuation. When the ray refractive index exhibits an imaginary part,
the ray amplitude is attenuated. Computing this attenuation along the ray
path is necessary, for it would allow the user to recognize paths where evanes-
cent rays practically stop propagating. This can occur even for non-collisional
media at cutoff- and resonance conditions, but including a realistic collision
profile (see item 2) would allow more accurate tracing ray attenuation. For an
overview of wave absorption per unit length, see [7] and [10].

4. Generation of ionospheric profiles without the need to resort to web scraping.
In this report, NASA’s IRI web tool [28] was scraped to obtain an analysis of
the IRI 2012 model, but this provisory method is not feasible for generating
an extensive 3D ray tracing grid. If we could execute the IRI 2012 model
from our own computers, we would be enabled to rapidly generate a realistic,
high-resolution ionospheric background for terrestrial ray tracing. For other
environments, the necessity of corresponding ionospheric models is inevitable
if we wish to perform ray tracing in these environments.

Once the issues listed above are resolved, the Suomi 100 ray tracer should proceed
with testing the results. The ray paths computed by the Suomi 100 ray tracer version
1.0 could for instance be compared to the corresponding results given by Proplab.
Code validation is essential for our ray tracing approach, for it must be noted that
the methods proposed in this report differ from the Hamiltonian methods employed
by a majority of ray tracing algorithms (for example, see [27] and [22]). Once it can
be confirmed that our ray tracer demonstrates realistic ray paths, the program can
be utilized in the context of the Suomi 100 mission, and possibly other purposes
deemed appropriate by the Aalto Space Physics group.
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A Cartesian coordinate linear transformations
In order to perform the planar refraction computations (chapter 3.6) and to visualize
vectors in a simple frame, it is convenient to perform a linear transformation of
Cartesian vectors x into the desired frame x′. The transformations are defined by a
corresponding (3× 3) linear transformation matrix A

x′ = Ax (A.1)

where the vectors x′ and x are evaluated in a proper Cartesian frame, e.g.

x = axêx + ayêy + az êz. (A.2)

A.1 To plane of incidence

The plane of incidence is defined by the incident wave normal k and the boundary
unit normal s ≡ ∇N

|∇N | , defined in an arbitrary Cartesian frame x. For this trans-
formation, s is in the positive êz′-direction and êy′ is normal to the plane:

• the z-axis is in the direction of s, i.e. êz′ = s

• the incident wave normal kI lies in the (x′-z′)-plane, i.e. êy′ = k×s
|k×s|

• the x-axis is subsequently êx′ = êy′ × êz′

We wish to select the boundary normal direction which points away from the incid-
ent side of the boundary. In the MatRay code developed in this work, this is done
by a logical operation:

γI = arccos k·∇N
|k||∇N |

IF
(
γI >

π
2

)
:

∇N → (−∇N)
γI = arccos k·∇N

|k||∇N |

The transformation matrix is thus given by A.3, which transforms a vector into the
plane of incidence system:

1

b

sz(szkx − sxkz)− sy(sxky − sykx) sx(sxky − sykx)− sz(sykz − szky) sy(sykz − szky)− sx(szkx − sxkz)
(sykz − szky) (szkx − sxkz) (sxky − sykx)

bsx bsy bsz

 ,
(A.3)

b = |s× k| =
√

(sykz − szky)2 + (szkx − sxkz)2 + (sxky − sykx)2. (A.4)

In the MatRay code, the transformation A.3 is performed by the function
transform_to_planeofincidence. It must be pointed out, that this transform is
not defined in the singular case when s and k are parallel, i.e. normal incidence.
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However, in this special case no refraction calculations are necessary since the wave
passes through the boundary without changing direction, and the transformation
A.3 is not needed.

When transforming from the plane system back to the global system, the trans-
formation is given by the inverse matrix of A.3. Since the matrix is orthogonal [21],
the inverse transformation is simply the transpose of A.3, given by

1

b

sz(szkx − sxkz)− sy(sxky − sykx) sykz − szky bsx
sx(sxky − sykx)− sz(sykz − szky) szkx − sxkz bsy
sy(sykz − szky)− sx(szkx − sxkz) sxky − sykx bsz

 . (A.5)

In the MatRay code, the inverse transformation A.5 is performed by the function
transform_from_planeofincidence.

A.2 To propagation coordinates

Although the ray tracer developed in the context of this report does not trace po-
larisations, it might be of use in future version to investigate the dynamics of the
wave eigenvectors, i.e. its electric field and magnetic field vectors. The polarisation
equations and the axes presented in chapter 2.4 are chosen in a system for which

• the z-axis is in the direction of wave propagation, i.e. êz′ = k
|k|

• the background magnetic field B0 lies in the (x′-z′)-plane, i.e. êy′ = k×B0

|k×B0|

• the x-axis is subsequently êx′ = êy′ × êz′
These definitions uniquely determine the transformation matrix A for a vector x
(which components are given in an arbitrary coordinate system) as

1

ab

kz(kzBx − kxBz)− ky(kxBy − kyBx) kx(kxBy − kyBx)− kz(kyBz − kzBy) ky(kyBz − kzBy)− kx(kzBx − kxBz)
a(kyBz − kzBy) a(kzBx − kxBz) a(kxBy − kyBx)

bkx bky bkz


(A.6)

a = |k| =
√
k2x + k2y + k2z , (A.7)

b = |k×B0| =
√

(kyBz − kzBy)
2 + (kzBx − kxBz)

2 + (kxBy − kyBx)
2. (A.8)

One must note, that the transformation above is not defined in the singular case k ‖
B0. In this case however, the polarisations are strictly transverse, and formulating
proper transforms is simple. This is not studied further in this report, but we chose
to present this ’propagation transform’ for possible future reference.

For transforming back to the global frame, the inverse transformation can be
obtained from the transpose of matrix A.6: 1

ab
(kz(kzBx − kxBz)− ky(kxBy − kyBx))

1
b
(kyBz − kzBy)

1
a
kx

1
ab

(kx(kxBy − kyBx)− kz(kyBz − kzBy))
1
b
(kzBx − kxBz)

1
a
ky

1
ab

(ky(kyBz − kzBy)− kx(kzBx − kxBz))
1
b
(kxBy − kyBx)

1
a
kz

 . (A.9)
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A.3 To spherical coordinates

The orthogonal spherical vectors r̂, λ̂ and ψ̂ can be expressed using a set of Cartesian
coordinates as [20]

r̂ = cosλ cosψêx + cosλ sinψêy + sinλêz, (A.10)

λ̂ = sinλ cosψêx + sinλ sinψêy − cosλêz, (A.11)

ψ̂ = − sinψêx + cosψêy. (A.12)

Here λ and ψ are respectively the latitude and longitude, as opposed to the standard
convention of using polar and azimuthal angles (see Figure 18). The notation of local

Figure 18: Spherical coordinates as commonly used in physics: radial distance r,
polar angle θ and azimuthal angle ϕ. This convention is not used for the ray tracer’s
global coordinate system - instead, the latitude λ is given by λ = π

2
−θ. The longitude

ψ is still given by ψ = ϕ.

spherical altitude and arc coordinates used in this report can be explained as follows
(see Figure 19):

• h is the altitude above the Earth’s surface directly in the local radial direction

• ∆ζ is the displacement in the local North-South direction, parallel to the vector
λ̂, along the arc of the great circle in that direction

• ∆χ is the displacement in the local East-West direction, parallel to the vector
ψ̂, along the arc of the great circle in that direction
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Figure 19: Illustration of the local altitude and arc coordinates. The radial distance
r is given by r = RE + h. The grid cell is be placed at the position (r, ζ, χ).

This choice of coordinates is useful for the quasi-rectangular simulation grid, because
adjacent grid cells can easily be expressed locally by a discrete amount of displace-
ments in these coordinates. Furthermore, the boundary normal in local spherical
coordinates is explicitly expressed by

∇′rN = r̂
∂N

∂h
+ λ̂

∂N

∂ζ
+ ψ̂

∂N

∂χ
(A.13)

For evaluating the boundary normal in the global coordinate system, one requires
the inverse transformation of A.10-A.12. Due to their orthogonality, the inverse
transformation is trivially given by the transpose of A.10-A.12, given by matrix
A.14:

A =

cosλ cosψ sinλ cosψ − sinψ
cosλ sinψ sinλ sinψ cosψ

sinλ − cosλ 0

 . (A.14)

As an example, at the location (60◦N, 20◦W) some altitude h above the ground,
the local density gradient is evaluated from equations 3.7-3.9 to be

∇′rN = 2.0r̂− 0.1λ̂+ 0.3ψ̂ m-4. (A.15)
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For this geographic location, the inverse transformation matrix A.14 is given by

A =

cos(60◦) cos(−20◦) sin(60◦) cos(−20◦) − sin(−20◦)
cos(60◦) sin(−20◦) sin(60◦) sin(−20◦) cos(−20◦)

sin(60◦) − cos(60◦) 0

 (A.16)

≈

 0.470 0.814 0.342
−0.171 −0.296 0.937
0.866 −0.5 0

 . (A.17)

Hence, the density gradient in the global coordinate system is given by

∇rN = A∇′rN (A.18)
≈ 0.961êx − 0.0313êy + 1.78êz m-4. (A.19)

B Alternative method for transforming refracted wave
normals to the global system

After refraction, it is convenient to transform the wave vector from the incident
plane system back to the original system using matrix A.5. Since the refracted wave
still lies in the plane of incidence in this simplified ray tracer, a transform for the
refracted wave can easily be conceived by solving a linear system. The proposed
program will use the results presented in Appendix A.1 since the transformations
are exact, but we still chose to present an alternative method due to its simplicity.

The program has to be provided with s, k, γI , and γT or γR depending on whether
transmission or reflection is traced (see Figure 9 for how the angles are defined). All
angles are between 0 and π

2
. Before refraction is performed, the boundary normal

pointing away from the incident side of the boundary has been selected (Appendix
A.1). For this analysis however, it is necessary that the selected boundary normal
points into the same side of the boundary as the refracted wave. For instance, for
a reflected wave one must use the boundary normal pointing into the incident side.
This selection is done by a logical operation:

IF(Reflect) :
∇N → (−∇N)

ELSE:
∇N is unchanged

The equations also look different for the transmitted and reflected case, hence
the program would be branched into one of two methods: B.1 for a transmitted
wave, and B.2 for a reflected wave.

B.1 Transmitted wave

In the plane of incidence, the transmitted wave unit vector t can be expressed as a
linear combination of the boundary normal s and the incident wave normal k, both
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of which are defined in the global (original) coordinate system. This defines three
scalar linear equations:

t = as + bk. (B.1)

Furthermore, the transmitted wave kT makes an angle γT with the boundary normal,
and an angle γI−γT with the incident wave kI ≡ k. This defines two linear equations:

t · s = |s| cos γT , (B.2)
t · k = |k| cos (γI − γT ) . (B.3)

Solving these five linear equations yields a unique solution for the transmitted
wave in the global system:

tx =

(
sin γT
sin γI

)
kx
|k|

+

(
cos γT −

sin γT
tan γI

)
sx
|s|
, (B.4)

ty =

(
sin γT
sin γI

)
ky
|k|

+

(
cos γT −

sin γT
tan γI

)
sy
|s|
, (B.5)

tz =

(
sin γT
sin γI

)
kz
|k|

+

(
cos γT −

sin γT
tan γI

)
sz
|s|
. (B.6)

B.2 Reflected wave

In the plane of incidence, the reflected wave unit vector r can be expressed as a
linear combination of the boundary normal s and the incident wave normal k, both
of which are defined in the global (original) coordinate system. This again defines
three scalar linear equations:

r = as + bk (B.7)

Furthermore, the reflected wave makes an angle γR with the boundary normal (which
now points into the incident side of the boundary), and an angle (π − γI − γR) with
the incident wave (see Figure 20). This defines two linear equations:

r · s = |s| cos γR, (B.8)
r · k = − |k| cos (γI + γR) . (B.9)

Solving these five linear equations yields a unique solution for the reflected wave
in the global system:

rx =

(
sin γR
sin γI

)
kx
|k|

+

(
cos γR +

sin γR
tan γI

)
sx
|s|
, (B.10)

ry =

(
sin γR
sin γI

)
ky
|k|

+

(
cos γR +

sin γR
tan γI

)
sy
|s|
, (B.11)

rz =

(
sin γR
sin γI

)
kz
|k|

+

(
cos γR +

sin γR
tan γI

)
sz
|s|
. (B.12)
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Figure 20: Illustration of a reflected wave after refraction.

C Ray unit vector
From Equation 2.39 one can determine the angle between the wave normal and the
ray. The ray unit vector g lies in the plane defined by the wave normal k and the
magnetic background B0, and the ray can thus be expressed as a linear combination
of the two:

g = ak + bB0. (C.1)

Furthermore, the ray makes an angle α with the wave normal k and an angle (θ−α)
with the magnetic background, where θ is the angle between k and B0:

g · k = |k| cosα, (C.2)
g ·B0 = |B0| cos (θ − α) . (C.3)

Solving the linear system defined by these five linear scalar equations yields a unique
solution for g. The solution can be simplified to obtain:

gx =

(
sinα

sin θ

)
Bx

|B0|
+

(
cosα− sinα

tan θ

)
kx
|k|
, (C.4)

gy =

(
sinα

sin θ

)
By

|B0|
+

(
cosα− sinα

tan θ

)
ky
|k|
, (C.5)

gz =

(
sinα

sin θ

)
Bz

|B0|
+

(
cosα− sinα

tan θ

)
kz
|k|
. (C.6)

In the special cases θ = 0, θ = π or |B0| = 0 the ray is in the same direction
as k. These three special cases need to be programmed separately into the ray
tracer, as the ray direction equations presented in this chapter would diverge if
direct evaluation is performed.
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D Flow chart of the ray refraction algorithm
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E Multipole expansion of current loop magnetic field
For a static current distribution, the magnetic field is related to the source current
by Maxwell’s equations

∇ ·B = 0, (E.1)

∇×B = µ0j. (E.2)

Equation E.1 ensures the existence of the vector potential A, which is related to the
physical magnetic field by the partial differential equation

B = ∇×A. (E.3)

Inserting E.3 into E.2, and employing the Coulomb gauge

∇ ·A = 0 (E.4)

gives a Poisson equation for the magnetic vector potential

∇2A = −µ0j. (E.5)

If the source current j does not extend to infinity (which is expected for a physical
field) a solution to E.5 is given by the Newtonian potential [26]:

A(r) =
µ0

4π

∫
j

|r− r′|
dV ′. (E.6)

Here r denotes the position of measurement, and the primed quantities r′ and dV ′
respectively the source position and volume element. For an ideally thin current
loop carrying the uniform line current I, the current distribution can be expressed
by the line element dl′ as

jdV ′ = Idl′. (E.7)

Inserting E.7 into E.6 gives the more usable form of the vector potential:

A(r) =
µ0I

4π

∮
dl′

|r− r′|
. (E.8)

The length |r− r′| can be rewritten using the law of cosines

1

|r− r′|
=

1√
r2 + r′2 − 2rr′ cosφ

(E.9)

which can further be written as a Legendre polynomial series expansion

1√
r2 + r′2 − 2rr′ cosφ

=
∞∑
n=0

1

rn+1
Pn (cosφ) (r′)

n
. (E.10)

Thus, the vector potential can be expressed (exactly) by the multipole expansion

A(r) =
µ0I

4π

∞∑
n=0

1

rn+1

∮
Pn (cosφ) (r′)

n
dl′. (E.11)
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The monopole term of E.11 is given by n = 0, for which P0 (cosφ) = 1:

A0 =
µ0I

4πr

∮
dl′ = 0. (E.12)

The monopole term is thus zero everywhere. The all-important dipole term is given
by n = 1, P1 (cosφ) = cosφ:

A1 =
µ0I

4πr2

∮
r′ cosφdl′ (E.13)

=
µ0I

4πr2

∮
(r′ · r̂) dl′. (E.14)

The magnetic dipole moment m is defined as

m = I

∮
r′ × dl′. (E.15)

By using simple vector calculus, it can be shown that for a loop current

m× r = Ir

∮
(r′ · r̂) dl′. (E.16)

Inserting E.16 into the dipole term E.14 gives the closed-form expression

A1 =
µ0

4πr3
(m× r) . (E.17)

When one is very far away from the current loop, i.e. (r � r′), the exact solution
for the entire vector potential is given by the dipole term E.17. Furthermore, for
an ideal current loop of zero size but finite dipole moment, it can be shown that
E.17 gives the exact solution everywhere. If we intend to model the geomagnetic
field using a small current loop source placed at the center of the Earth, the dipole
field gives the field above the surface to very good approximation. It is however
completely possible to include higher terms of the multipole expansion (quadrupole,
octopole etc.) in the vector potential. This possibility is not analysed further in this
report. For an elaborate treatment of the vector potential and multipole expansions,
see [11].

The approximate magnetic field of a current loop is then given by inserting E.17
into E.3, producing the dipole magnetic field

B(r) ≈ ∇×A1 (E.18)

=
µ0 |m|
4πr3

[3 (m̂ · r̂) r̂− m̂] . (E.19)
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F Refractive index argument

Figure 21: Computed refractive index arguments (Eq. 3.15) for the ordinary wave in
some extreme cases. The propagation angle θ is the angle between the wave normal
k and the magnetic background B0.
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Figure 22: Computed refractive index arguments (Eq. 3.15) for the extraordinary
wave in some extreme cases. The propagation angle θ is the angle between the wave
normal k and the magnetic background B0.


