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A large portion of launched CubeSats have failed early on their missions. Potential
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as being inadequate functional system integration testing. In this thesis test
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solar panels among others. The testing however identified certain issues in the
integration of the payload radio instrument. The tests included the “Day in the
life” testing and it is possible to anticipate that this test can increase the overall
success rate of CubeSat missions. A testing guideline that includes this test is
recommended to be added to the CubeSat project.

Keywords: CubeSat, Satellite failures, Suomi 100, System integration testing,
Test automation, Day in the life of a satellite



aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Juha-Matti Lukkari

Työn nimi: Automatisoitu Suomi 100 satelliitin funktionaalinen järjestelmän
integraatiotestaus

Päivämäärä: 21.5.2018 Kieli: Englanti Sivumäärä: 7+120

Elektroniikan ja nanotekniikan laitos

Professuuri: Avaruustiede ja -tekniikka

Työn valvoja: Prof. Esa Kallio

Työn ohjaaja: TkT Antti Kestilä

Suuri osa avaruuteen laukaistuista CubeSat –satelliiteista on epäonnistunut jo
mission alkaessa. Toteutuneiden CubeSat –missioiden tilastojen pohjalta onkin
esitetty, että yksi merkittävä epäonnistumisen syy on ollut puutteellinen järjestel-
män funktionaalinen integraatiotestaus. Tässä työssä Suomi 100 –piensatelliitille
suoritettiin testiautomaatiota käyttäen funktionaalisia järjestelmän integraatio-
testejä. Työssä kehitettiin uudelleenkäytettävä testiautomaatiokirjasto, nimeltään
CubeSatAutomation, ja tätä voidaan käyttää vapaasti jaettavissa olevan Robot
Framework testaustyökalun kanssa. Testien avulla varmennettiin satelliitin peruso-
minaisuuksien toimivuus, esimerkiksi radiokommunikaatio, telemetria, turvalliset
uudelleenkäynnistykset ja akkujen latautuminen aurinkopaneelien avulla. Testit
toivat esille mm. satelliitin radiomittalaitehyötykuorman integraatioon liittyviä on-
gelmia. Satelliitille tehtiin myös niin kutsuttuja "Päivä satelliitin elämässä”-testejä.
On oletettavaa, että tämän testin suorittaminen piensatelliiteille pienentäisi ai-
kaisen epäonnistumisen todennäköisyyttä. Työn tuloksena on suositus CubeSat
–satelliitti konseptiin lisättäväksi ohjeistusta järjestelmän integraatiotestaamisesta,
johon testi sisältyy.

Avainsanat: CubeSat, Satelliittien epäonnistumiset, Suomi 100, Järjestelmän
integraatiotestaus, Testiautomaatio, Päivä satelliitin elämässä
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1 Introduction

1.1 Increasing interest in space
Since the 1950s, mankind has made great steps into space [1]. Nations, industries,
businesses, militaries, universities and even private entrepreneurs have sought to
benefit from the opportunities that space offers [1, 2, 3]. Great advancements have
been made in technology and science to propel this endeavour further forward [1].
Examples of such leaps in techology include sending the first human into space in
1957, the Moon landings in 1969, the sending of probes to other planets in the Solar
System such as Mars and most recently, getting the first images of Pluto in a flyby
mission in 2013 [1, 4]. The use of space technology has also entered into household
items through, for example, the use of the Global Positioning System (GPS) satellite
network in mobile phones, cars, and so forth [5]. People and industries have began
increasingly to be reliant on spaceborne technologies and devices [5].

From the end of the 1990s, new inventions have additionally brought the design and
manufacturing of these technologies relatively closer to everyday people, away from
the assembly sites of large nations and large organizations into laboratories run, for
instance, by university students [6]. Advancements leading to this can be attributed
to the space industry catching up with the advancements of electronics as well as
to cheap launch opportunities that have become available [7, 8]. More concretely,
development of the CubeSat nanosatellite concept in 1999 in California Polytechnic
State University (Cal Poly) has in recent years brought about hundreds of new
satellite developers and hundreds of new space missions based on this nanosatellite
concept [6, 7, 9].

These satellites typically are relatively small and usually use commercial off-the-
self (COTS) components, yet are still capable of operating in space around Earth
[6, 7]. CubeSats have in recent years emerged as a new viable platform for carrying
out space missions [7]. Moreover, due to their small size their launch costs are
smaller [8]. The use of COTS components makes these satellites relatively quick to
design and cheap to manufacture. Several companies have shown great interest in
the concept and other organizations (such as the US military) have shown interest
as well [6, 7, 8].

As an example, the Finnish government recently passed a new law regarding
space and is pursuing the creation of a new industry of space technology related
companies in Finland [10]. The first CubeSats built in Finland at Aalto University
have even created new space companies which are building their own satellites to be
launched into space, for instance Iceye [11]. In all, over 600 CubeSat missions have
been launched since the first mission in 2003 [12]. The trend seems to be so that
more and more CubeSat missions are to come, and they are starting to take a clear
share of the space industry market [13]. Already in 2014, approximately half of the
flown space missions in that year were CubeSat missions [14].
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1.2 Substantial proportion of failed CubeSat missions
Even though the CubeSat concept has rapidly created a large amount of new space
missions, a large portion of the missions launched have ended in failure due to various
reasons [14, 15]. Several surveys done in recent years have found a failure rate of
40 % for CubeSat missions made by newcomer developement teams [14, 15, 16, 17].
However, if the satellites that were manufactured by teams with earlier experience in
space missions, failure rates have demonstrated considerably lower. Suggestions have
been made in these surveys that the missions that have failed have not performed
proper functional testing on ground at a system integration level or that such testing
has been missing completely [14, 15, 16].

Ph.D. Michael Swartwout has made several studies into this subject [12]. His
research suggests that the majority of CubeSat failures could be attributed to
inadequate testing of the satellite in a flight-equivalent state on the ground [14, 16, 17].
He believes that functional testing of the whole integrated satellite system has been
lacking completely or has been done in a very limited sense. Failures that have been
attributed to improper functional system integration include the solar panels not being
properly connected, insufficient power generated for the transmitter, unrecoverable
processor errors and so forth [16].

Though the concept of CubeSats shows promise, from the statistical data it can
be seen that there remain some challenges for the satellite concept [12, 14, 15, 16, 17].
Overall reliability of CubeSats needs to be improved, if they are to become a valid
alternative to traditional space missions that are long lasting and resource consuming.

1.3 Suomi 100 CubeSat
The satellite involved in the research is called Suomi 100 and it is a one-unit (1U)
CubeSat. The project was conceived in the interest of celebrating Finland’s 100
years of independence. The mission of the satellite is to take images of Finland from
space and to measure different radio signals present in the ionosphere. An artistic
impression can be seen in Figure 1 on the next page.

1.4 Research purpose and goals
The aim of this thesis is to investigate how to carry out functional system integration
testing in order to improve CubeSat reliability. Further, we wish to perform the
testing in a systematic manner. By using software tools for automation of the testing,
we can achieve a certaing degree of rigour and a systematic approach to testing.
Similarly, verification tests for mechanical stress required by the CubeSat standard
are done systematically in an automated fashion [9]. It would also be preferable
that the functional system tests could be performed automatically in a systematic
manner.

From the technology point of view, the goal will be achieved by developing new
generic and reusable function library with Python programming language which can
be used with the Robot Framework [18] along with appropriate test suites and test
setups.
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Figure 1: Depiction of Suomi 100 satellite in space. Courtesy of Mr. Jari Mäkinen.

1.5 Main questions and problems
The main problem analyzed in this thesis is the unreliability of CubeSats, which the
thesis tries to partly solve from the standpoint of system integration testing. The
main question is, firstly, could this type of testing detect unrecoverable failures in
the satellite operation and system integration, and, secondly, could we, in addition
verify that the satellite fulfills its functional requirements?

1.6 Outlining the scope of research
In this thesis we study the use of one industry-proven automated acceptance testing
framework to carry out the automated functional testing on Suomi 100 and investigate
the use of certain space-industry proven testing philosophies and methodologies into
functional system integration testing with CubeSats.

In conjunction with the space industry test methodologies, we attempt to some
degree simulate the environment related to functional operations of the satellite. In
addition, we require that the simulation has to take into account the relatively small
funds of university-led CubeSat projects.

Tests involving other aspects of the system than functionality and functional
system integration are outside the scope of the thesis. Similarly, no investigation
into other testing frameworks is conducted.
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2 Background

2.1 CubeSat failures
The CubeSat project was started in 1999 in Cal Poly [9]. Over 100 universities
and other organisations have since contributed to the project. The purpose of the
project is to provide a standard for the design of nanosatellites in order to decrease
development costs and to make accessability to space easier [9]. In fact, the number
of launched CubeSats has increased quite dramatically over the past few years [14],
and it has been estimated that the number of CubeSat missions will increase in the
coming years [13]. Nevertheless, a large portion of these missions have failed due to
various reasons [14, 16, 17]. The most common reasons include communication being
lost with the satellite, batteries not recharging and the OBC not restarting, with an
average of only 20 % of missions being able to complete their full missions [14].

2.1.1 The CubeSat satellite specification

The CubeSat project defines a CubeSat to be a nanosatellite with dimensions of
10 cm × 10 cm × 10 cm and with a mass up to 1.33 kg [9]. A satellite of this size is
considered to be a 1U CubeSat. These units can be stacked together to form larger
CubeSats, with some satellites consisting of even 12 units. A stack containing three
units appears statistically to be the preferred size for a CubeSat [14].

Another important part of the concept is the Poly Picosatellite Orbital Deployer
(P-POD), which is a Cal Poly’s standardized CubeSat deployment system [9]. This
deployment system is integrated with the launch vehicle and the springs in the system
release the nanosatellites into space [9]. Usually a launch vehicle carries some primary
payload, which is much larger than the CubeSats [19]. If an extra weight can be
launched along with the main payload, then the deployment pods with the CubeSats
contained inside are integrated into the launch vehicle as secondary payloads [19].

Although these nanosatellites are considerably smaller than most "traditional"
satellites, they nonetheless are able to perform the regular operations of a satellite
[20]. As the classification, nanosatellite defines, CubeSats are satellites in miniature
size. Even though smaller, the same general class of subsystems are part of CubeSats
as they are part of larger satellites [20]. Subsystems containing electronics usually
follow PC/104 standard which defines form factor and computer bus [21]. A single
subsystem in a CubeSat can fit into one Printed Circuit Board (PCB) following
the PC/104 standard [21]. Figure 2 illustrates the internal structure of Suomi 100
CubeSat and the different subsystems that are integrated into the satellite.

From this Figure we can identify five subsystems that are common to all satellites.
Power to the satellite is produced by the Electric Power System (EPS) and this
subsystem consists of the solar panels and batteries in the satellite. Additionally,
the subsystem usually has some power regulation and power distribution features
along with some features for reliable power production and storage [22].

The central computer of the satellite is called the On-Board Computer (OBC) and
the task of this subsystem is to orchestrate the operation of all the other subsystems.
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Figure 2: Depiction of Suomi 100 satellite subsystems. Courtesy of Aalto University.

In addition, the processing of commands received from the ground station and the
routing of them to the appropriate subsystem is the task of the OBC. [22]

The Communication system (COM) is responsible for communication with the
ground station. This subsystem usually has a computer of its own for processing the
received radio signals. The antennas are also part of this system. Besides receiving
and processing commands from the ground station, Housekeeping (HK) telemetry of
the satellite system is commonly broadcasted in order to inform the ground station
about the state of the system. A satellite Beacon is a specific type of broadcasted
telemetry which is used to obtain the location of the satellite as well as its state in
general. [22]

The proper orientation of the satellite is controlled by the Attitude Determination
and Control System (ADCS). For CubeSats, the orientation can be controlled either
by mechanical reaction wheels, magnetorquers or by some other methods. The
purpose of this system is to keep track of the orientation of the satellite and to change
it according to commands received from the ground station. [22]

In addition to these subsystems, the Support Structure forms the subsystem which
integrates all of the subsystems into a single mechanical structure [22]. The CubeSat
standard defines the dimensions and materials for the support structure [9].

The ground station in itself forms another element in the entire satellite system
[22]. As noted, communication with the satellite occurs via the ground station. The
station tracks and monitors the satellite and all the necessary information from the
satellite is downloaded to the station. A ground station consists of hardware elements
such as antennas, power amplifiers and other radio components [23]. A computer is
connected to the hardware elements and a ground station software on the computer
is used to control and track the satellite [22, 23]. Pictures of the ground station in
Aalto University are presented in Figure 3.

2.1.2 Failure rates of CubeSats

Over 600 CubeSats have been launched as of 2017 [12]. Some studies in recent
years have been carried out to investigate the statistics of flown CubeSat missions.
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Figure 3: Satellite ground station in Aalto University. On the left in the image
a computer is running the satellite control and tracking software. Certain radio
hardware elements are present as well. The antenna used for controlling Aalto-1
satellite is on the right in the picture.

These studies looked for the percentage of failed missions and which subsystems
contributed to each failure. Out of these failures, the amount of dead on arrival
(DOA) missions, where the satellite was never even able to be contacted from space,
were also identified. The most active contributor to this topic has been Michael
Swartwout and the representation of statistics of CubeSat failures in this thesis
is based mainly on his work [14, 16, 17], as not too many papers have yet been
published on this issue.

A study entitled The First One hundred CubeSats: A Statistical Look, that was
published in 2013, identified the failure rate for the first 100 flown CubeSats. Out
of these first CubeSat missions flown between the years 2000-2012, a total of 34
had failed. From these failures, a third were never able to be contacted after they
were released into space (DOA cases). Since then, many CubeSats have flown with
varying degrees of success [14]. Figure 4 shows the mission statistics for all CubeSats
flown until 2017 [24]. The different colours show at which state a CubeSat mission is
or to which state the mission ultimately reached.

In order to break down and investigate the statistics, Swartwout has been continu-
ing yearly to publish papers about the statistics of CubeSat failures, as new missions
are flown each year [14, 17]. A study published in 2016, Secondary Spacecraft in 2016:
Why Some Succeed (And Too Many Do Not), identified out of all CubeSats flown
between 2000-2015 that reached orbit, 21 % were DOA cases, and 9.8 % were cases
where the spacecraft was lost early in its life. When a CubeSat was lost early in its
life, this means that communication with the satellite was established but no primary
operations could be executed. When breaking down the statistics to categories based
on the type of satellite and mission developer (new university teams, traditional
contractors, experienced university and government teams, constellations), it was
found that for the new university teams flying their first satellite, the failure rates
were as follows: 44.1 % DOA, 16.2 % early loss and 16.2 % mission success. On
the other hand, for the CubeSats built by traditional contractors with established
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Figure 4: Mission statistics for CubeSats flown until 2017. [24]

practices for integration and testing the numbers were: 6.3 % DOA and 6.3 %
early loss. This DOA failure rate, however, halved when the new university teams,
educated by their first failure, flew their second satellite. [14, 17]

Figure 5 below shows the statistics of failures for CubeSats between 2000-2015
flown by new university teams sending their first satellite, excluding those missions
where the satellite was lost due to launch failure.

44.10%

16.20%

23.40%

16.20%

DOA
Early loss
Partial mission
Full mission

Figure 5: Statistics for CubeSats flown between 2000-2015 that were constructed by
university teams without prior experience of satellite construction. [14]

For contrast, same statistics for CubeSats built by traditional contractors is shown
in Figure 6. A clear difference in DOA and early loss missions is visible for these two
different groups.
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Figure 6: Statistics for CubeSats flown between 2000-2015 that were constructed by
traditional contractors with extensive experience of satellite construction. [14]

2.1.3 Contribution of different subsystems to satellite failures

Swartwout studied also the contribution of different subsystems to CubeSat failures
in the paper The First One hundred CubeSats: A Statistical Look [16]. The sub-
systems that were thought to be the cause of the failure were identified as follows:
a configuration or interface failure between communications hardware (27%), the
power subsystem (14%) and the flight processor (6%), or the COM, EPS and OBC
subsystem. A failure in a subsystem means in this context that the whole satellite
is lost due to the failure. A failure in the OBC can mean, for example, that the
processor fails to restart anymore or gets unrecoverably stuck in some way. For EPS
the error can mean, for instance, that power is not being transferred to the satellite
from the solar panels, and failure in the COM subsystem can imply, for example,
that there is insufficient power for the antennas to close the link with the ground
station. [16]

Based on the beliefs of the satellite developers about the causes of failures, another
study was carried out by Langer et al. in 2014 [15] to investigate in more detail
the contribution of different subsystems in CubeSat failures. This study by Langer
also used the statistical data of CubeSat failures obtained from the CubeSat Failure
Database (CFD), at that point comprising data of about 178 CubeSat missions.
With this data a reliability estimate for different subsystems was calculated using a
Kaplan-Meier estimator for nonparametric and parametric analysis. In addition, a
parametric model for total CubeSat satellite reliability was devised. Figure 7 depicts
the subsystem contributions to satellite failures for the first 178 CubeSat missions.
Three main subsystems causing failures were identified in order of importance:
EPS, OBC and COM, in accordance with Swartwout research, but with different
percentages as EPS being the main contributor to failures [15, 16].

The statistical data gathered from questionnaires sent to 987 satellite developers
(with 113 returned fully completed) showed that there was a belief that within the
first six months there was a 50 % chance that the satellite would fail. However,
the beliefs of the developers seem to be too optimistic when compared to the data
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Figure 7: The beliefs of developers on the contribution of different subsystems to
satellite failure. From left to right the charts present failure contribution data for 0,
30 and 90 days after launch. [15]

gathered from CFD. Nonetheless, from the subsystems having the greatest and least
likelihood of causing system failure, the main subsystems were identified in the order:
COM, EPS and OBC. [15]

2.1.4 Needs for system integration level functional testing

The aforementioned studies made some anecdotal guesses to what could have con-
tributed to the failures in the satellites, ensuring that the missions failed either
partially or completely. Though the current data does not clearly prove these edu-
cated guesses, it is believed by Swartwout and others that system integration level
functional testing of the satellites has been lacking completely or has been inadequate
[14, 15, 16, 17].

Based on his study in 2013, Swartwout came to a strong belief that the critical
failures in the subsystems were caused by poor system integration. Notably, out
of first 30 identified DOA cases, 24 were CubeSats made by university teams. In
addition, based on his discussions with project managers and faculty leaders, it was
noted that university teams constructing CubeSats have the misconception that the
satellite works as expected the first time it is assemled together and thus no system
integration level functional testing is performed. In the study, it was believed that
operational tests demonstrating a "Day in the life of the satellite" would be just as
necessary as the vibrational tests to certify a CubeSat ready for launch. In addition,
testing of recovery from resets, power management, startup sequences etc. would be
important operations for the satellite to test. [16]

In later papers Swartwout has been less reluctant to make these claims directly, yet
still identifying the large number of failed CubeSat missions coming from university-
led satellite teams [14, 17]. As an example, the ORS-3 mission flown in 2013 consisted
of 28 secondary payloads, and 13 of these payloads were assembled by new university
teams flying their first satellite, and 15 were constructed by traditional contractors
[14]. While almost all (11 out of 13) of the university-built CubeSats failed, only
one CubeSat built by a traditional contractor failed. Furthermore, all of these
satellites had to go through the same vibrational and thermal tests and, in addition,
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were subject to mission-readiness reviews by the National Aeronautics and Space
Administration (NASA) and/or Department of Defense of United States. Thus, some
practices applied by the experienced contractors in satellite development were most
probably missing from the university-built CubeSats.

In addition, David Voss of the Air Force Research Lab speaking more recently at
the 31st Annual Conference on Small Satellites held on 7th of August 2017 about
CubeSat reliability said that, based on his experience with student and other small
satellite projects, a core set of tests for power, communication and other subsystems
would be needed [25]. Furthermore, Michael Johnson, also a participator in the
aforementioned conference and chief technologist at NASA’s Goddard Space Flight
Center has been since 2017 working at NASA on making a reliability iniative to
determine the best ways to improve CubeSat reliability [25, 26]. He noted though
that the goal is not to apply the same rigorous assurance procedures used earlier in
larger and more expensive spacecraft, but to design new procedures and keep some
of the older methods that can be useful.

2.1.5 Comparison of CubeSat failures to failures with larger spacecraft

Besides CubeSats, failures have happened to more traditional spacecraft as well. In
fact, the history of the space industry as a whole is filled with examples of failed
missions [27]. As an example, in recent years several Mars landers have failed during
the landing phases of the mission [28]. For instance, Mars lander Schiaparelli crashed
on the Martian surface in 2016 when a sensor used to measure the distance to the
ground read a negative value and shut off its descent thrusters [29].

Earlier research about the on-orbit failures was carried out in 2005 [30]. It
investigated failures of 129 different spacecraft between the years 1980 and 2005.
The study found that there were many cases where the spacecraft failed early during
its mission. Majority of the failures were caused by failures in the ADCS and EPS
subsystems. The investigation concluded that among improved redundancy and
flexibility in system design, adequate testing on ground could as well mitigate these
failures as it was noted that the early failures could have been caused by inadequate
testing and inadequate modeling of the environment where the spacecraft operates
in. These conclusions in fact seem to be similar to what some of the surveys done on
CubeSat failures indicate. [30]

A research conducted in 2008 analyzed the contributions of different subsystems
in the failures of 1584 satellites that were launched between 1990 and 2008 [31].
Solar array deployment and failure in the communication system were the major
contributors to satellite failures for satellites that failed before 30 days after launch.
After much longer operation period (i.e. years), the main subsystems contributing to
failures were identified to be the ADCS and COM. Some similarity to the subsystem
failures with CubeSats can be drawn here, with the communication subsystem and
the solar panels playing a crucial role in the infant mortality of CubeSats.

Further indication for the need of extensive testing was found after NASA initiated
in the 1990s a more streamlined verification strategy based on the best commercial
practices, commonly known as "Faster, Better, Cheaper" [32]. This led to poor results
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with commercial satellites that were launched during that period and a return to the
more rigorous specifications and standards was expressed [32]. In addition, a study
conducted during this period in 1999 called "When Standards and Best Practices
Are Ignored", found that out of 50 major space system failures 32 % were related to
inadequate verification and test processes [33].

In conclusion, based on the experiences found by the traditional space industry, the
allegation that many CubeSat failures are due to poor testing at system integration
level could be correct.

2.2 Satellite testing
Satellites and many other spacecraft can be classified as embedded systems [34]. An
embedded system is defined in Real-Time Systems Design and Analysis: Tools for
practitioner as "A system which contains one or more computers (or processors)
having a central role in the functionality of the system, but the system is not explicitly
called a computer" [35]. Systems such as these can contain many parts and consist
not just of software but of hardware elements as well [36].

The testing of embedded systems has thus to take into account software testing as
well as hardware testing and the interplay of software and hardware [36]. For example,
mechanical stress and thermal vacuum tests are required by the CubeSat standard
to be performed for CubeSats before launch [9]. Presenting different methodologies
into hardware testing is out of the scope of this thesis as the topic of research is
functional testing at system integration level. Performing a test such as this is, in
practice, testing the software in the final hardware environment [36]. The general
methodologies and practices used in software testing as well as some testing practices
used by the traditional space industry are presented in this section.

2.2.1 Practices for software testing

First a relevant question, why do we need to perform testing? One reason is that
humans make errors and often make optimistical assumptions about their work.
Another aspect would be to call testing as a method of proving that the System
Under Test (SUT) works as we want it to work. Just as a scientist carries out
experiments to prove his theory, so too testing is done to prove that the system
works as expected. A system in the context of testing can refer to anything from a
single software function to entire operating system of a spacecraft. [37]

Another important aspect of testing is to find defects in the system and to
recognize where they exist so that they can be corrected effectively [35, 38]. A book
by Glenford J. Myers titled The Art of Software Testing, defines software testing
as "Testing is the process of executing a program with the intent of finding errors",
which is a general enough definition to contain many aspects of software testing [38].

Methods of testing

Various different methods for software testing exist. So called box approach is one
common method for testing [35, 38]. Testing can either be done automatically
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by some computer-run script or manually by a tester who follows a specified test
plan. Some of the testing methods are explained in the following pages in more detail.

Black box testing
Black box testing is performed with no knowledge about the internal structure of the
SUT, which can be a single function of a software or a whole operating system for
example. A select set of inputs are given to the system and from the outputs we see
how the system performed. If the outputs were what we expected, the system passed
the test. Black box testing is usually used when we are interested in the outward
functionality of the SUT. Figure 8 below illustrates black box testing method. [38]

White box testing
White box testing is performed when we are interested about the internal func-
tionality of the SUT. Testing of the internal functions rather than the outwardly
expected functionality is the goal of white box testing. Usually this type of testing
is performed at the smaller component or unit level of the system. Figure 8 below
gives an illustration of white box testing. [38]

Figure 8: Illustration of black and white box testing methods. [38]

Input selection
There exists different methods for choosing the appropriate inputs for testing. With
exhaustive testing all possible input combinations are investigated, which usually
leads to combinatorial explosion, and the testing of all of them can, in some cases,
even take millions of years. Boundary-value testing and Equivalence partitioning, for
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example, solve this issue by having a logical set of combinations and not all possible
ones. [38]

Another approach in choosing the right inputs is to look for the requirements
and specifications defined for the software [38]. Especially for higher-level testing
this approach is preferred. The set of inputs can in such cases also be derived from
specified user documentation of the program, which defines how the program is to
be used and what are the effects of the actions performed [38]. A single use case
describes how to use the system in order to reach a particular goal [35]. In other
words, a use case is a description of an operational scenario of the system.

Test case
A set of inputs along with the test preconditions and expected results form a test
case. The purpose of a test case is to drive the execution of a testable item to meet
the objectives defined for the test case, such as verifying proper implementation,
detecting errors and so forth [39]. A collection of test cases with the focus on testing
a specific area of a system is referred to as a test suite.

Levels of testing

Testing can be carried out at different levels of the system and at each level we
investigate different aspects of the system. Usually testing of an entire software
program is performed by starting from smaller parts and gradually moving to the
larger components of the system [35, 37]. One can define different levels of testing as
follows [35, 38, 39]:

Unit testing
Unit testing of software is the most basic level of testing. On this level, individual
components of a software program are tested separately. For example, testing the
outputs of a given software function is considered a unit test. Usually these tests are
written or performed by the person who also wrote that particular part of the software.
Black box and white box methods are usually applied for unit tests. Inputs for test
cases are commonly derived by using some of the methods for input combination,
such as equivalence partitioning.

Integration testing
Integration testing tests the functionality of larger software components, consisting
of several smaller units. With this level of testing we ensure that the smaller units
interact with each other properly and that the biggest component itself works properly.
Both black box and white box methods can be applied to carry out the tests. Inputs
for test cases are commonly derived in the same manner as with unit testing.

System testing
On this level, testing is done on a complete integrated software system to see whether
it conforms to the requirements specified for it by the development team. With this
testing, we see whether the integrated parts of the software work together and also
see how the whole system functions. Black box testing is usually applied at this level.
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The test cases derive their inputs with some of the methods specified for higher level
testing. For example from documented use cases of the system.

Acceptance testing
At this level testing is usually performed by some outside team that had no involve-
ment in the development of the software. This team could be specifically selected
final users or there could be a separate testing team to ensure that the final product
conforms to the original requirements defined by the orderer of the software. Black
box testing methods are applied at this level. The test cases derive their inputs with
some of the methods specified for higher level testing. The more commonly used
method is to derive the inputs from the documented use cases of the system.

System integration testing
In the interest of embedded systems, system integration testing is performed to
test the overall embedded system assembled from sub-components once the sub-
components have passed the previous testing levels. System integration testing is
performed to verify that the integrated system meets its requirements and for one to
detect any issues emerging when the sub-systems are brought together. Black box
testing is used to perform this testing. Some of the methods specified for higher level
testing are used to derive the inputs for the test cases. [36, 40]

Types of testing

Besides the method and level of testing chosen, there exists multiple types of different
testing that can be performed. The most common ones are the following [35, 36, 37]:

Functional testing
Functional testing is performed when we are interested in knowing what the SUT
does based on the inputs to it. Black box testing methods are mostly applied here.
Functional testing can be done at all levels of testing.

Non-functional testing
Non-functional testing on the other hand is interested in how the SUT operates,
rather than what it actually does. Several different testing types can be consid-
ered to belong under this category, such as performance testing or security testing
for example. Both black and white box methods can be applied to this type of testing.

Performance testing
Performance testing is done for the interest of knowning how stable and responsive
the system is under a certain load. This testing can be done at all levels and the
methods can vary.

Regression testing
Regression testing is usually performed after the software has changed from the
previous version which had been tested. For example, when a new feature is added
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or some defects are fixed, regression testing is done to see whether the old parts of
the software still work as expected. Usually a fixed set of unchanging test cases can
be executed once every change has been made to the software.

Smoke testing
Smoke testing is carried out to verify that the most important parts of the system
work properly. Usually the test set is small as we are only interested in seeing if
anything fundamental is not working in the system.

2.2.2 Space industry methodologies

In testing of the satellite software at different levels, one has to take into account
the effect of different system environments respective to the level of testing [36, 41].
From simulating the target hardware on a computer to running tests on an integrated
satellite, different methodologies exist to account for different environments [41]. In
addition, satellites consist of several subsystems (as described in section 2.1.1) and
each can have their own software. The software of each of these subsystems is tested
individually and finally together on the integrated satellite [35, 41].

At NASA, at different levels of system development, different environments and
different teams are used for testing [41]. During the course of the Apollo program,
NASA adopted the four-level software testing practice [42]. At the lowest level, unit
and integration tests of software of a hardware component/subsystem are carried out
by the software developers on a desktop environment. At the system and acceptance
levels the tests are performed by developers and separate test engineers respectively.
Simulators and testbeds are used when testing the software at this level [41, 43]. This
environment contains assembled subsystems, interface emulators and ground and
flight software. The goal is to properly verify the required software functionality. As
an example, a system testbed was used to test the operation of singular and several
subsystems of the Cassini-Huygens space probe [43]. Several inputs to the subsystems
simulated the space environment while tests were being carried out. On the system
integration level, the whole spacecraft is assembled and the integrated system is
tested with different scenarios of satellite operation [41, 44]. For example, downlink
procedures, maneuvres, payload operations and so forth are tested at this level. This
test is usually performed by a separate integration test team [41]. Figure 9 describes
the levels and methods of testing at different levels of spacecraft development.

At the European Space Agency (ESA) the preferred levels for testing of the
spacecraft are equipment, subsystem, element, segment and overall system [45]. ESA
also states that a system verification by testing shall consist of testing of system
performance and functions under representative simulated environments [45]. As can
be deducted, testing is done in a way similar to what is done at NASA.

Emphasis on testing at the highest level of assembly or in other words, testing
the whole assembled spacecraft has always been a NASA priority [46]. A mantra
commonly used in the space industry has been "Test like you fly" (TLYF), meaning
that a spacecraft should be tested on ground in the same way as it would be operated
in-orbit [32, 44]. In general, the TLYF philosophy provides a basis for acquiring and
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Figure 9: Illustration of spacecraft testing on different levels of system development.
[41, 44]

verifying a system and gives a mission-centric focus on space system validation and
verification [44]. As such, the same software and hardware should be used in testing
as that which will be used when the spacecraft is launched into orbit [32]. One such
test on system integration level using this philosophy is commonly referred to as the
"Day in the life" or operational satellite scenario testing [32, 44].

In the "Day in the life" testing, tests are derived from the mission operations
requirements documents [44]. A document called operations concept document,
or CONOPS, is commonly referred for this type of documentation [44, 47]. The
focus with this testing is on verifying whether the space and ground segments can
accomplish the mission as it was envisioned in these documents. The test involves
having the integrated and assembled spacecraft on the ground being flown in a
flight-like manner to the extent feasible. In addition, controlling and communicating
with the spacecraft from the ground station is tested in the way that has been
envisioned in the mission operations requirements document [44, 47]. This type
of testing has been deemed necessary as many failed space missions had actually
been succesfully tested to meet all their requirements, but were not tested to verify
succesful completion of mission objectives [44]. This test is required by NASA’s
Goddard Space Flight Center and ESA to be performed before a spacecraft can be
verified for mission readiness [44, 45].

It has to be further noted, that space as an environment itself provides extra
challenges for maintaining proper reliability of spacecraft. For example, variations in
temperature as well as particles carried by the solar wind bring unique demands for
reliable design. These devices operating practically out of our physical reach impose
further demands for system reliability. If a satellite orbiting at an altitude of 500 km
develops an unrecoverable processor error, there is no practical way for us to go there
and physically press the reset switch to get the satellite operating again. Therefore,
the testing of spacecraft has to be thorough and systematic. Higher demands are
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usually set for the testing of spacecraft than for terrestial systems. [22]

2.3 Test automation
Software test automation has been a topic of interest among software projects for the
past few decades [48]. It has been heralded as a solution for decreasing costs related
to testing and enabling the release of human resources for other tasks [49, 50]. Test
automation can be performed on many levels of testing, from unit level to acceptance
and beyond. It has been found to be most useful in automation of repetive tasks
and in automating execution of repetive test cases [50]. Several software tools and
frameworks for test automation have been developed over the brief history of test
automation [48, 50].

2.3.1 Test automation frameworks

A test automation framework is an integrated system that sets the rules of automation
for a specific product. This system integrates the function libraries, test data sources,
object details and various reusable modules. When some changes are made to the
system under test, only the test cases need to be modified. [51]

A common practice is that test cases are written into separate scripts with a
scripting language specific to the framework [18, 51]. Function libraries are written
into their own source code files with some of the more common programming languages
such as Python, Java, C++ and so forth [18, 52]. The test scripts then call for
the functions in the function libraries to perform the actual automation [52]. For
example, a script simulating a network system being used could call for functions in
the function library to send commands over the network.

2.3.2 Robot Framework

Robot Framework is generic test automation framework for acceptance testing origi-
nally developed in Nokia Networks [18]. The framework emerged from a Master’s
thesis written by Pekka Klärck for one Finnish software testing consultancy company
known as Qentinel Oy. The title of his thesis was "Data-Driven and Keyword-Driven
Test Automation Frameworks" and it was written in 2005 [18, 53]. In turn, the
writer of this thesis at hand has also been working at Qentinel and thus has become
quite familiar with the Robot Framework. This is one of the reasons why the Robot
Framework was chosen for the test automation of the Suomi 100 satellite.

Robot Framework is, in addition, open-source under the Apache 2.0 license, and
the modularity of the framework allows people and companies to write their own
testing libraries either with Python or Java. The core of the framework is implemented
with Python. Instructions for installing the framework can be found from Robot
Framework GitHub. The modularity and flexibility of the framework has thus made
it possible to use it to perform test automation on various different projects. Some
companies such as ABB, Nokia, Kone, Metso, Axon, Zilogic and others have used
the Robot Framework in the testing of embedded systems. Other companies such
as Finnair have also been utilizing it to test their web based applications. Some

https://github.com/robotframework/robotframework#installation
https://github.com/robotframework/robotframework#installation
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companies such as ABB, Metso and others are performing their testing with the
Robot Framework in many different areas. U.S. Naval research laboratory has also
been using the framework with their SAGE multi-agent system. [18]

Based on how many companies have been confidently using the framework [18] and
that it has been used in many different areas (embedded systems, web applications,
etc.), we feel confident to develop the test automation of the Suomi 100 satellite
with the Robot Framework. In addition, the framework being open-source makes it
even more appealing for this task [18]. Future CubeSat projects could use the Robot
Framework as well and possibly also use the generic libraries that are created in this
thesis.

Robot Framework uses a keyword-driven testing technique and the test scripts
have a tabular data syntax. With keyword-driven testing, the test cases consist of
keywords and each keyword performs a specified action. The keywords in a Robot
Framework test case are executed in order from top to bottom. The keywords
themselves can be written to be fairly abstract sentences (which perform many
different actions) or can be simple function calls (performing one action). Below in
Figure 10 a Robot Framework test suite script is shown. [54]

1

2

3

4

5

Figure 10: Example of a Robot Framework test suite with two test cases. See text
below for details.

In Figure 10, the number (1) on the script shows how function libraries are
included in the test suite. These libraries can simply be Python files or Python
classes. In that case, a simple Python file can be included to the suite by defining a
relative path and the filename. Python modules which are included in the operating
system PATH variable can be included without relative paths.
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Number (2) on the script illustrates how the test suite setup and teardown
scripts are included. These calls to start and close the test execution can also be
Python functions included in the function libraries. Call for Suite Setup defines what
operations are peformed at the start of the test execution, such as opening connection
to the SUT, initiating the system to a default state and so forth [54]. Calling for
Suite Teardown defines what actions are performed when test execution ends [54],
such as resetting and closing the SUT.

Number (3) shows in what way the test cases are defined. The names of the test
cases are arbitrary. However, they should be named differently from each other and
the naming preferably should represent the activity of the test case [54].

The lines next to number (4) present how keywords are called. The keywords
can be direct calls to Python functions or methods of the same name, or they can be
other keywords defined in some Robot Framework script file. The underscores and
letter cases in the Python function definition are translated so that the representive
Python function can be called with the keyword in any way the keyword is written
[54]. Spaces and letter cases do not concern the keyword when calling for a Python
function from the Robot Framework.

Under number (5) the parameters for the representive keywords are defined.
These parameters are separated from the keywords and from each other by arbitrary
number of tabular spaces [54].

When the script is executed, Suite Setup is first performed and then all the test
cases in order from top to bottom are executed. If any keyword in a test case fails,
the entire test case is counted as failed. Finally, Suite Teardown is called and the
test execution log files are generated in Hypertext Markup Language (HTML) by the
Robot Framework. Several Robot Framework log files can be seen in Appendix D.
[54]

2.4 Suomi 100 satellite mission
The software programs related to Suomi 100 satellite comprise the SUT in this thesis.
The satellite mission was conceived in 2015 in the interest of celebrating Finland’s
100 years of independence. The original design called for a 2U CubeSat, but was
later changed to a 1U CubeSat. The mission demanded having two payloads on
board the satellite. The first payload is a white light camera for taking images of
Finland from space, and the second payload is a science instrument which measures
the radio static in the ionosphere.

2.4.1 Mission requirements

The requirements and definitions for the mission are presented in this section. The
satellite and its software are described in section 3.1. The first requirement defines
the functional requirement of the mission as:
"Take images of Finland and measure RF radiation caused natural and
man-made sources."
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Table 1 below shows functional requirements derived from this requirement.

Table 1: Suomi 100 functional mission requirements derived from the requirement to
take images of Finland and to measure natural and man-made Radiofrequency (RF)
radiation

1st Derivation 2nd Derivation 3rd Derivation

Take 1
image of
Finland
per day

Capable of pointing
camera towards Finland

Camera points with 15
degree accuracy

Must compress images
for faster downlinking

RAW, BMP and JPEG
output formats

Image resolution shall be
adequate to discern
geographical features

250 m / pixel
resolution

Must take images at both
day and night time

Polar orbit
(SSO noon/midnight)

Capable of
measuring
entire frequency
range
at all
points over
Finland

Payload capable of
measuring RF radiation
between 1 -10 MHz

1-10 MHz region
measured in 6 kHz strips
Sampling frequency 32-48 kHz
50 samples from
each 6 kHz band

Adequate resolution
for scientific
measurements

Radio resolution 16 bits
AGC resolution 5 bits

Must compress data for
faster downlinking

Calculates summed value
of the 50 data points of
each frequency band

Can
communicate
with
ground
station

Satellite sends and
receives
data via cubesat
space protocol

Ground station uses
Cubesat space protocol

Software includes scheduler

The second requirement defines the operational requirement as:
"Suomi 100 is a CubeSat."

This requirement defines in general that Suomi 100 must meet the requirements
defined for the CubeSat standard and other operational performance requirements
such as power consumption and downlink speed. For the interest of this thesis, going
through them in detail is unnecessary. It is necessary only to note that Suomi 100
meets the requirements set for the CubeSat standard, and that the requirements for
power consumption and downlink speed are met.
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2.4.2 Satellite operation modes

As the satellite has several operations it needs to perform, different operation modes
were identified for the mission. The operation modes are presented in detail below:

Target mode/measurement mode
The payload radio performs several sweeps over the entire frequency range. Because
the orientation of the satellite has little effect on the payload radio antenna, the ADCS
system is turned off. This is done to mitigate noise caused by the magnetorquers. The
OBC calculates the average values of the received signal power to reduce the size of
the data. Alternatively, the raw data may also be stored in case the operator requests
it. The satellite gathers telemetry at least every 10 minutes (should be prepared to go
down to 1 minute) and sends a beacon every 1 minute.

Low observation mode
This mode is similar to Target mode except that the payload radio takes measurements
at a single frequency. This mode can be used to track ionosonde signals. The satellite
gathers telemetry at least every 10 minutes (should be prepared to go down to 1
minute) and sends a beacon every 1 minute.

Communication mode
Measurement and housekeeping data is sent down to the ground station via the
Ultra-High frequency (UHF) link whenever possible, as data downlinking is the most
restrictive factor of the mission. This mode is also used to send commands to the
satellite. The satellite doesn’t send a beacon during this mode, or gather telemetry
unless specifically commanded.

Power charge mode
Only the essential components of the satellite are operating so that the solar panels
can charge the satellite’s batteries. Additionally, ADCS is used for optimal solar
panel efficiency. Housekeeping is gathered. The satellite gathers telemetry at least
every 10 minutes (should be prepared to go down to 1 minute) and sends a beacon
every 1 minute.

Imaging mode
The onboard camera is used to take images of the Earth, which requires the ADCS to
accurately point the camera toward the Earth. The images are either compressed by
the camera or stored as raw images in the internal memory of the camera module.
The satellite doesn’t send a beacon during this mode, or gather telemetry unless
specifically commanded.

Software update mode
Similar to the communication mode, the largest data traffic goes now up, with only
the most essential telemetry being sent down. The satellite doesn’t send a beacon
during this mode, or gather telemetry unless specifically commanded.
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Idle mode (everything goes back to this mode)
The satellite always returns to this state if its not doing any of the other modes. The
ADCS is off. The satellite gathers telemetry at least every 10 minutes (should be
prepared to go down to 1 minute) and sends a beacon every 1 minute.

Observation & imaging mode
The onboard camera is used to take images of the Earth, which requires the ADCS to
accurately point the camera toward the Earth. The images are either compressed by
the camera or stored as raw images in the internal memory of the camera module.
The payload radio performs several sweeps over the entire frequency range before
and/or after the image is taken. The satellite doesn’t send a beacon during this mode,
or gather telemetry unless specifically commanded. This is a data intensive mode.

Debug/status mode
This mode is specifically for checking out the satellite’s health. Housekeeping can be
gathered as quickly as 10 seconds, beacon is sent every 1 minutes, and all subsystems
should be possible to be used. Use examples: e.g. timing of ADCS turning, EPS solar
panels functionality check, radio functionality check.

Deployment mode
The satellite starts in this mode - i.e. antennas are ready to deploy, 30 minutes
switch-on time for EPS and 45 minute UHF radio beacon broadcast start time are
ready to start immediately when the satellite is deployed. The correct commands for
the thermal knives that cut the antenna lines are known and ready to start as soon
as the EPS starts 30 minutes after deployment.

2.4.3 Instrument modes

In addition to the mission and operation modes, the different operational modes for
the Suomi 100 payloads were defined as well. For the radio payload, three different
modes are defined. For the white light camera, one mode is defined. In addition, a
few macro modes containing both of the payloads are defined as well.

First mode for the radio instrument, Raw data mode, is tied to the Low observation
satellite operation mode. With this instrument mode, we use a single frequency to
measure the signals in the upper ionosphere. Table 2 shows the arguments related to
this mode.

Similarly as in the first mode, the second mode for the radio instrument is closely
related to the Low observation mode. In this mode we use a single frequency for
the measurements, but individual measurements are not stored. Instead, certain
statistical values from a number of individual measurements are calculated and
retained for analysis. These statistical values can be either (0) mean, (1) mean &
median, (2) mean & median & standard deviation or (3) mean & median & standard
deviation & minimum & maximum. Table 3 describes the arguments related to this
mode.
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Table 2: Raw data mode

Description Values Default
Mode starting
time "immediately"

Frequency 1-10 MHz 5 MHz
Number of
measurements >1 100 000

Skipped
datapoints >0 1000

Antenna 0/1 0

Table 3: Average raw data mode

Description Values Default
Mode starting
time "immediately"

Frequency 1-10 MHz 5 MHz
Number of
stored calculations >0 100

How many
measurements used
in calculations

>0 100

Skipped datapoints >0 1000
Which calculations
performed 0,1,2,3 0

Antenna 0/1 0

The third mode for the radio instrument is similar to the second mode and tied
to the Target Mode operation mode. In this instrument mode, we store statistical
data about individual measurements as in mode two. But the frequency we use is
varied during the operation of the instrument. The frequency first starts at some
value, measurements are made and stored, and then the frequency is increased and
measurements are made again. This procedure is performed until some defined
maximum frequency is reached. Several cycles of this sort can be performed. Table 4
illustrates the arguments which are part of this instrument mode.

For the camera payload, there is only one instrument mode defined. This mode
defines which direction to point the camera, the image quality and other parameters.
In addition, this instrument mode is part of the Imaging mode operation mode. Table
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Table 4: Ramped average data mode

Description Values Default
Mode starting
time "immediately"

Starting frequency 0.1-10 MHz 1 MHz
Ending frequency 0.1-10 MHz 10 MHz
Number of frequency
values >0 10

Number of cycles >0 100
Skipped datapoints >0 1000
How many measurements
used in calculations >0 100

Which calculations
performed 0,1,2,3 0

Antenna 0/1 0

5 describes these parameters in more detail.

Table 5: Photo mode

Description Values Default
Mode starting
time "immediately"

Camera direction 1-6 1 (nadir)
Image format
(0) RAW (1) BMP
(2) JPEG

0-2 2

Exposure time 10000-
100000 10 000 microseconds

Auto gain 0/1 0 (No autogain)
JPEG quality 0-100 85

By combining some of the instrument modes for the radio instrument and for
the camera, several different macro modes can be constructed. For example, first
performing the first mode for the radio instrument and, secondly using the camera
with its instrument mode, and finally performing another measurement with radio
instrument mode 3.
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2.4.4 Automated functional system integration testing

The testing of the Suomi 100 satellite is performed for the purpose of (1) verifying
subsystem integration and (2) satellite reliable operation as well as (3) verifying that
the satellite meets its functional requirements. The functional requirements of the
mission are described in sections 2.4.1, 2.4.2 and 2.4.3. Test cases are derived from
the operation modes presented in section 2.4.2.

In this thesis, we have chosen automated functional system integration testing
to cover the type of tests that we perform for the Suomi 100 satellite. The testing
can be identified to be Black box testing. Automated refers to the fact that an
automated testing framework is used for test execution. Functional comes from the
reason that we test the functions the satellite performs based on the selected inputs
and commands. System integration refers to the fact that testing is performed on
the whole integrated satellite. Testing is carried out this way because, as mentioned
earlier in section 2.1, this kind of testing has most likely been lacking in previous
CubeSat missions. Moreover, carrying out these tests could possibly mitigate failures
that occur early in the life of a satellite. In addition, we attempt to verify that the
satellite functions in accordance with the requirements set for it.

Features to be tested
Based from the research represented in section 2.1, the testing will focus on testing
of features that have been believed to have caused failures with CubeSats, or that
testing of them has been inadequate. In order to ensure a successful Suomi 100
mission, tests will be performed for the two payloads as well.

From the operation modes, four different conglomerates of features are identified
for testing: (1) functionality of the camera payload, (2) functionality of the radio
payload, (3) reliable operations of the basic software features of the satellite such as
housekeeping, safe reboots, software updates and so forth. Tests for the (4) "Day in
the life" operational mission scenario testing will be performed likewise.

Approach to testing
Testing will focus on functional testing and it is performed at System integration
level for all four features. Test automation is used in test execution, and the tool for
this is the Robot Framework. The functional environment for each respective feature
is to be simulated by inputs external to the satellite. For testing of the operation
of the camera, natural light is used as an input. Testing of the radio payload will
use externally generated radio signals as input. The tests for the "Day in the life"
scenarios will use a solar simulator, and the satellite will be commanded over a radio
link. All these tests will be performed for the integrated satellite.

Testing of the ADCS subsystem in a simulated environment will be omitted due
to resource constraints. However, execution of the ADCS commands shall be part of
the "Day in the life" testing.

Test case Pass/Fail criteria
All tests are considered critical, thus a failure in execution of one test step (one
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Robot Framework keyword) in a test case leads to test case failure. In addition,
failure in a single test case marks a test suite as having failed. Test steps are failed
based on the responses of the satellite control software.
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3 Methods and Setup

3.1 Suomi 100 satellite
Suomi 100 satellite is assembled together with a 1U CubeSat platform manufactured
and designed by Gomspace company from Denmark. This 1U CubeSat, which is
known as NanoEye in the Gomspace product catalogue, forms the structure and bus
systems of the satellite [55]. This part of the satellite is referred to as the platform
in this thesis henceforth. A picture of the platform is shown in Figure 11. On top
of the platform, another payload was added, consisting of an Amplitude Modulated
(AM) radio on a PC-104 type PCB, two ferrite antennas and a support structure.
All were designed and assembled at Aalto university by members of the Suomi 100
satellite team. This part of the satellite is referred to as the radio payload in this
thesis.

The subsystems and the satellite platform have flown in space aboard other
missions successfully [56]. The platform forms a relatively well tested system with
which we can investigate the development of automated functional system tests for
CubeSats [56]. In addition, the radio payload and its control software integrated
to the platform give another aspect for study. Namely, how to test the integration
of a subsystem with the rest of the satellite, as all the rest of the subsystems were
integrated by GomSpace.

One main mission goal of the Suomi 100 satellite is to take pictures of the northern
hemisphere, especially of Finland. The satellite flies in the upper ionosphere in a
polar orbit at an approximate altitude of 500 kilometers. With the radio payload a
noise-map and natural noise levels in this area of the ionosphere could be mapped
out.

Figure 11: GomSpace NanoEye 1U. Courtesy of GomSpace A/S. [55]
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3.1.1 Subsystems

The satellite consists of several subsystems. The central subsystem of any satellite is
the system with the computer designated as the OBC. In the Suomi 100 platform it
is known as NanoMind and is based on an Atmel 32-bit microcontroller [57]. Another
vital system to the satellite is naturally the EPS and it is known as NanoPower in
the platform [58]. The communication system of a satellite is the system responsible
for receiving commands from the ground, and is responsible for sending information
back to the ground as well. In the platform the communication system is known as
NanoCom [59].

Besides these essential systems common to all satellites, we have as payload
an optical white light wide angle Earth-observing camera and the radio payload
measuring Medium/High frequencies (MF/HF). The camera came along with the
GomSpace platform and is known as NanoCam in their catalogue [60]. The most
essential subsystems to the topic of this thesis are described in more detail in this
section.

On-Board Computer - Nanomind
The Nanomind A3200 On-Board-Computer shown in Figure 12, is based on an Atmel
AT32UC3C model Microcontroller unit (MCU), which is a 32-bit Reduced Instruction
Set Computer (RISC) with advanced power saving features. This system runs the
software that is responsible for the majority of operations of the satellite, and it
works as a sort of mediator between subsystems and routes communication between
them. The software is explained in more detail in the following subsection.

The MCU has two Inter-Integrated Circuit (I2C) buses and one Controller Area
Network (CAN) bus for communication with other subsystems. It has also 8 Analog
to Digital Conversion (ADC) pins, which can also be programmed to work as General
Purpose Input-Output (GPIO) pins. Nanomind contains a Synchronous Dynamic
Random Access Memory (SDRAM) with 32 MB of capacity for volatile storage as
well. For non-volatile storage, the subsystem has a 128 MB NOR Flash. Figure 13
shows a block diagram of the OBC. [57]

Figure 12: Nanomind OBC inside its casing. Courtesy of GomSpace A/S. [57]
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Figure 13: Block diagram of Nanomind. Courtesy of GomSpace A/S. [57]

Electrical Power System - NanoPower
The Nanopower P31 on Suomi 100 satellite contains two lithium-ion batteries and
has several reliability features. Figure 14 shows a picture of the subsystem. The
batteries are charged by the five solar panels aboard the satellite and the batteries
provide power to the whole satellite through the stack connector on the PCB of
the EPS subsystem. The system has its own microcontroller, which measures the
voltages, currents and temperatures of the system. The microcontroller can also be
used to control the 5 V and 3.3 V power buses of the EPS, among other features of
the MCU. [58]

Figure 14: Nanopower EPS. Courtesy of GomSpace A/S. [58]

Communication subsystem - NanoCom
The NanoCom COM system shown in Figure 15 is a software configurable half-
duplex transceiver designed for long-range transmissions. Certain parameters of the
system can be reconfigured on-orbit, such as frequency, bitrate, modulation type and
filter-bandwidth. Data rates can be between 0.1 - 115.2 kb/s. The subsystem has its
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own microcontroller as well as essential radio elements such as Power Amplifier (PA)
and Low-noise amplifier (LNA). [59]

Figure 15: NanoCom communication system. Courtesy of GomSpace A/S. [59]

Camera payload - NanoCam
First of the payloads in Suomi 100 satellite is the NanoCam wide-angle white

Figure 16: NanoCam payload camera. Courtesy of GomSpace A/S. [60]

light camera, presented in Figure 16. The subsystem consists of a lens, image
acquisition and processing board. The lens is an industrial grade lens and the image
acquisition element is an Aptina MT9T031 3-megapixel Complementary Metal Oxide
Semiconductor (CMOS) color sensor. The processing element consists of a PCB with
components such as an Atmel SAMA5D35 processor with a clock rate of 536 MHz,
512 MB of DDR2 memory for image storing and processing, and a 4 GB eMMC flash
drive with 2 GB for image storing. [60]

The software for image processing and storing runs on a customized embedded
Linux (GomSpace Linux) operating system, and there are several features for im-
age acquisition and storing. The images can be stored in either RAW, BMP or
JPEG formats. Several parameters of the camera system can be altered while in
orbit, such as exposure time, different gain values, gamma correction and so forth. [60]

Radio payload
The second payload of Suomi 100 satellite is the AM radio payload. As noted,
this payload was developed by the Suomi 100 satellite team, namely by M.Sc Petri
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Koskimaa, B.Sc Amin Modabberian and B.Sc Arno Alho, based on the concept of the
ground-based lightning detector envisioned by Ph.D. Jakke S. Mäkelä [61, 62, 63, 64].
Figure 17 shows the PCB of this subsystem. Central to the system is the Silicon Labs
Si4740 automotive Amplitude Modulated/Frequency Modulated (AM/FM) Radio
receiver on an Integrated Circuit (IC) [65]. It can receive signals with frequencies
from 149 kHz to 23 MHz in 1 kHz steps. The Si4740 can be set to receive AM,
AM/SW/LW or FM signals. Several features of the IC can be modified. These
include frequency, volume, output format, sample rate, attack rate, release rate and
many more. Commands to the Si4740 are sent via the I2C bus and the output of
the receiver is read via the SPI bus [66].

Figure 17: Second payload of Suomi 100, AM radio instrument. Courtesy of Aalto
University.

Another important element of this subsystem are the antennas and their support
structure. The antennas were designed by M.Sc Petri Koskimaa. Design and
construction of the antennas are described in his Master’s thesis, "Ferrite Rod
Antenna in a Nanosatellite Medium and High Frequency Radio" [67]. These antennas
are four ferrite rods, with two on either side of the support structure forming one
antenna. The first antenna is used when listening to frequencies below 2 MHz, and
the second one is for frequencies between 1.0 and 9.3 MHz.

The support structure for the antennas was developed by Ph.D Antti Kestilä and
it was made with a 3D printer using Ultem plastic, a material that can sustain the
extreme environment in space relatively well [68].

3.1.2 Gomspace software

Besides the subsystems for the NanoEye platform, GomSpace also provided software
for all these subsystems. The essential core of the software architecture is a delivery
protocol known as the CubeSat Space Protocol (CSP), which was originally developed
in 2008 by a group of students from Aalborg University in Denmark. The protocol
has further been developed and maintained by GomSpace itself. In practice, the
protocol is used for communication between different subsystems as well as with the
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ground station. Different subsystems are considered as different CSP nodes in the
CSP network. [69]

The protocol as well as the software for the subsystems were written in C pro-
gramming language. In addition to the specific software for each subsystem, all
the systems share a set of common functionalities. These common functionalities
include sending and storing of HK data, parameter tables for adjusting the different
functionalities of a given subsystem, logging functions and inter-subsystem commu-
nication through CSP. In addition, each subsystem provides a terminal shell known
as GomSpace Shell or GOSH for control of the subsystem via a PC by using the
Minicom software. [69]

The software developed by GomSpace for NanoEye additionally includes such
general functionalities as the File Transfer Protocol (FTP) running over CSP, with
which files and data can be uploaded and downloaded from the satellite. Certain
basic file handling routines can be handled with the FTP as well. Among the file
handling functionalities is the ability to compress or decompress files with the ZIP
format. Additionally, the software in the satellite can be updated via the FTP by
uploading a software image to the satellite and telling the computer to start reading
from it after next reboot. In addition to these, the Flight Planner is another general
feature of the platform and with it commands can be set to execute at certain points
in time either once or repeately with some interval. [69]

The operating system running in the NanoMind OBC is a free Real-time Operating
System (RTOS) known as FreeRTOS, which is a lightweight operating system designed
for embedded systems that use microcontrollers and small microproserssors [70]. It
was developed by Real Time Engineers Ltd. in USA. The version of the operating
system used in the Suomi 100 satellite is 8.0. The operating system is mostly
written in C programming language, but certain necessary parts are written with
the Assembly programming language.

FreeRTOS is a real-time scheduler where different tasks execute in a Round Robin
fashion, where each task is given some priority value, and tasks with higher priority
value are given more processing time. Those with the same priority value take turns
in the execution of instructions. Only one task at a time can be in a running state and
all the others wait for their turn according to the scheduling policy. In addition to
scheduling, the operating system offers functionalities for inter-task communication
via semaphores, for example. [70]

3.1.3 Satellite control software - CSP Client

The ground station software used to control the satellite is known as the CSP Client,
which is a simple console program for remotely sending commands to the satellite
via CSP, a program written by GomSpace in C programming language. The syntax
of the software is almost identical to the Gomspace Shell found in the subsystems
manufactured by GomSpace. As the source code is available to us, we were able
to add our own commands to control the radio payload among other things. In
Figure 18 the CSP client is shown running in Debian 9 Linux, showing among other
commands a command inquiring for housekeeping data from the EPS subsystem.
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Figure 18: Suomi 100 ground station program running in Linux.

The software has over a hundred commands if the subcommands related to the
main commands are counted. Thus only the main commands used in test automation
of Suomi 100 are presented here:

reboot <CSP node>
Reboots a CSP node.
shutdown <CSP node>
Shutdowns a CSP node.
cmp route_set <node> <timeout> <addr> <mac> <ifstr>
Defines a routing path within the CSP network.
rdpopt <window size> <conn timeout> <packet timeout> <delayed
ACKs> <ACK timeout> <ACK delay count>
Configures parameters for CSP packet transmissions over radio link.
hk get <type> <interval> <count> <t0> <path>
Get housekeeping data of certain type. Can be received periodically and the data
can be stored in the satellite as well.
eps hk
Get housekeeping data from the EPS.
ping <CSP node> <timeout>
Test reachability of a certain CSP node within the CSP network.
rparam download <CSP node> <mem>
Download configuration parameters from a CSP node.
rparam set <name> <value>
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Set configuration parameter value.
rparam get <name>
Get the value of a configuration parameter.
rparam send
Send the defined parameters back to the satellite.
fp server <node> <port>
Sets the flight planner server to a defined CSP node.
fp create <name> [+]<sec> <command> [repeat] [state]
Creates a flight plan with a defined name and command.
cam snap [-a][-d <delay>][-h <color>][-i][-n <count>][-r][-s][-t][-x]
Takes a picture with the camera on the NanoEye platform. Several features can be
defined on or off, such as automatic gain, image thumbnail and so forth.

3.1.4 Software for radio payload

The software for controlling the AM radio instrument was developed by B.Sc Juha-
Matti Lukkari, the author of this thesis, and by M.Sc Jouni Rynö from the Finnish
Meteorological Institution. Unlike most of the subsystems in Suomi 100, the radio
payload has no microcontroller of its own or any other general purpose computer.
Therefore, the control software operates as a few FreeRTOS tasks in the NanoMind.
In addition, new commands for operating the payload instrument were added to the
CSP client as well as to the NanoMind GOSH terminal.

One of the radio payload FreeRTOS tasks receives a command as a CSP packet,
which is then parsed as a command to be sent via the I2C bus on NanoMind to the
Si4740 IC, for example. Command of the Si4740 is based on the hexadecimal values
of the bytes it receives [66]. The first byte received defines which action is being
performed and the following bytes define the arguments for that respective action
[66]. The IC then gives a response byte, with hexadecimals 80 and 81 implying a
succesful command, and, for example, 40 or 0 implying a failed command [66].

Over 50 different arguments for different commands can be used when controlling
the Si4740 [66]. Therefore, when commanding the radio payload to perform a
measurement, the different values for different arguments are loaded either from a
configuration file or from a GomSpace paramater table. The parameter table and
the configuration file were separately added to the NanoMind. All the commands
can choose to use either one of these argument sources. In addition, the commands
can be used "manually" without loading any external configuration for the command.

Some of the most essential commands for the radio payload operation in CSP
client are presented here:

radio on <config> <reg>
Turns on the Si4740 chip, among various other operations needed to setup the pay-
load.
radio operation <config> <config> <mode> <mode arguments>
Runs one of the radio operation modes defined in section 2.5.3.
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radio set_property <config> <property> <value>
Sets one property of the Si4740 to a defined value.
radio get_property <property>
Gets the value of a certain property defined in the Si4740.

3.2 Automating testing of Suomi 100
One of the research purpose and goals pointed in section 1.4 was the aim of using test
automation to perform testing for the Suomi 100 satellite, and the Robot Framework
was defined as the test automation framework for this task. The detailed technical
solution for automating the testing of Suomi 100 is described in this section.

3.2.1 API and communication layers for CSP Client software

In order to automate the control of the satellite, some form of interface is needed
which can communicate between the satellite and the framework used to perform the
tests. Fortunately, the Gomspace software already provides a terminal shell program
called GOSH on each of the subsystems [57]. In addition, all of the subsystems can
be controlled from a single shell via a serial to a USB FTDI cable connected to
NanoUtil USB port [71]. As presented in the previous subsection, a separate CSP
client software tool exists, which can be used to control the satellite from the ground
station via a radio link, and it can also be used to control the satellite via the FTDI
cable.

Automating the control of the CSP client software was chosen as the solution on
how to automate the control of the satellite. The CSP client was chosen, because
by automating control of it, we can perform tests via the radio link as well. The
automation was first done by modifying the source code of the main.c file of the
CSP client, which contains the C-language main function for the program. The
modification consists of creating a POSIX thread which runs a function that opens
and listens to a socket connection on the localhost local network address. The
localhost is a specific network address referring to the computer itself [72]. When a
message is received on the opened socket, the thread then runs the command on the
CSP client terminal, as if a user would have written the command on the terminal.
Alternative solutions could have been used, for example a separate program could
have been written and the CSP client could have communicated with it through
some of the inter-process communication methods provided by the Linux operating
system. This could have been made through Linux output and input standard stream
redirection methods such as pipes [72]. Using the network connection, however gives
the potential to make the automation externally controllable.

Over the course of development of the libraries and test suites, a more direct
approach of using the standard input stream (stdin), to send commands to the
CSP client was also chosen. Furthermore, an even more direct method of simply
automating the keypresses of the keyboard was implemented with the aid of a Python
library called pyautogui. The benefit of having the communication performed with
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stdin or with automated keypressing through a Linux kernel keyboard driver, is that
we can automate the use of not just the CSP client but the use of many different
terminal programs. Even programs with source codes that we have no access to,
thus omitting the need to write a separate Application Programming Interface (API)
into them as was done with Suomi 100. Nonetheless, using self-tailored process
communication APIs which work via e.g. pipes or sockets, have some advantages
over these sort of "crude" methods. For example, use of stdin can be reserved to the
program in a way that it is not accesible outside the program itself. Sending the
commands by automating keypresses can bypass this. However, if a user uses the
computer during testing, the keypresses can be received by programs that we did
not wish to automate.

Nonetheless, in order to create a generic test automation library, all of these
process communication methods are incorporated into the release version of the
CubeSat test automation function library, which is explained in more detail in section
4. If we ourselves write the terminal software with our own testing library in mind,
all of these communication methods should be valid for automating the testing.

Besides requiring the method of sending commands to the satellite to be performed
in an automated fashion, we also must know how the satellite responds to these
commands in order to verify the tests as either passed or failed. The CSP client
software fortunately receives responds to the commands sent to the satellite, and
thus we have some knowledge of how the satellite behaved. It was found that the
easiest solution would be to read the standard output stream (stdout) of the CSP
client program and transfer the responds to the verification functions in the function
library.

Another way for the capture of the responses to the commands would be to modify
the source code of the CSP client for it to send the received outputs of the executed
commands to another port on the socket connection. In this way we could then listen
to this port on the function library. Doing the transmission of CSP client output
to the test automation libraries this way was experimented by using some Linux
output redirection routines such as dup [72]. However, there were some difficulties
with the implementation, and due to time constraints it was easier to monitor the
standard output of the client software. Furthermore as mentioned before, during the
development of the test automation libraries, use of stdin for communication was
developed as well. In fact, as with using stdin to send commands to the process,
reading the stdout of the process allows us to create a generic test verification solution
to this as well, provided that the process which we wish to perform automated tests
on responds through the stdout stream, which fortunately happens to be the case
for most terminal programs [72].

The solution for the communication is illustrated in Figure 19 and the modified
main.c for the CSP client can be found in Appendix B.

3.2.2 Python libraries

A set of function libraries using Python programming language were written. All
of these libraries each consisted of one Python class. The class of the core library,
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Figure 19: Illustration of the software architecture developed for Suomi 100 test
automation. Large rectangles represent environments, small ones represent layers
and rounded rectangles represent programs.

known as CubeSatAutomation, has the methods for the communication with the
CSP client via any of the three methods, socket, stdin or automated keypressing via
the pyautogui library. Furthermore, the library includes the methods to read and
verify the process replies from stdout. As can be seen in Figure 19, the commands
are sent to the CSP client through any of the three communication routes and the
output of the program goes to the stdout. The output is then caught and read by
the CubeSatAutomation library and test cases and test steps or keywords are failed
or passed based on the output read from the CSP client.

It is importation to note the following details about the test automation libraries.

CubeSatAutomation library
CubeSatAutomation library has the crucial functions for sending commands, opening
socket connection, opening and closing the opened program and others. Besides being
able to open the CSP client program, any program can be automatically opened with
the library as the method for opening uses the standard Python subprocess library.
All the other libraries implemented use the core methods in CubeSatAutomation,
for example, to send commands to the CSP client to execute. These other libraries
have subsystem-specific functions for the test automation. To create only one open
communication route between the CSP client and the Robot Framework and to have
only one handle on the CSP client program process, the core library defines these
as class variables, which are then accessed by the subsystem libraries. In practice
this means that we do not open several CSP client programs and several connection
routes separately for each subsystem library included in the test suite. Instead, the
program and the communication route is opened only once for each test suite.

Another class variable which defines the scope of the instance of the class in the
Robot Framework was defined as well. This was set to define the scope of the library
to be on the suite level. By having the scope on the suite level, only one instance of
the library class is declared per test suite, thus again having only one handle on the
client software and having only one connection route open during the execution of a
test suite [54].
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The essential core methods used in the CubeSatAutomation Python class are pre-
sented here in the form of Robot Framework keywords:

Client Start <config file> <program> <parameters>
Start the program that is to be automated (CSP client). In addition, command line
parameters as well as some additional configurations can be defined.
Client Close <socket> <program>
Close the program and the possible socket assiocated with it.
Connect Socket <config file> <server> <port>
Opens a socket connection to a defined server and port address. These values can be
read from a configuration file as well.
Send Command <message> <option> <timeout> <read timeout>
Sends a command through the socket connection and reads a reply from the standard
output. The reply can be stored temporarily or discarded.
Write Command <message> <option> <timeout> <read timeout>
Writes a command to the standard input and reads a reply from the standard output.
The reply can be stored temporarily or discarded.
Type Command <message> <option> <timeout> <read timeout>
Types a command by automating keypresses on the keyboard and reads a reply from
the standard output. The reply can be stored temporarily or discarded.
Persistent Command <message> <exception replies> <end reply> <time-
out> <read timeout>
Writes a command persistently to the standard output until a defined reply is read
or either a specific error reply is read or a timeout value is reached.
Verify Reply Contains <message> <timeout> <read timeout>
Reads several lines from the standard output and tries to find for a defined message
from the lines.
Verify Reply Contains Not <message> <timeout> <read timeout>
Reads several lines from the standard output and tries not to find for a defined
message from the lines.
Verify Reply Contained <message> <timeout> <read timeout>
Tries to find a defined message from the replies that were stored by an earlier com-
mand.
Wait Until Reply Contains <message> <timeout> <read timeout>
Reads from the standard output until a defined message is found or a timeout is
reached.

Finally, here are some of the keywords presented that are specific to GomSpace
NanoEye.

Set Satellite Parameter <device> <parameter> <value>
Sets value of a configuration parameter of a defined device in the CSP network.
Send Satellite Parameters
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Sends the set parameters back to the satellite.

Creation of a skeleton core library is the aim of the final development of the test
automation library. This library only has the aforementioned methods to start and
communicate with a desired Linux program running on a terminal shell and keywords
that are more specific to the Suomi 100 or CSP client are omitted. With the aid of
this library, satellite software developers wishing to automate testing of their satellite
and satellite software, can create their own specific libraries suited to their own needs.
The final version of the CubeSat test automation library is described in section 4.

Subsystem libraries
Other libraries developed for test automation of Suomi 100 are called NanoCam.py
and RadioPayload.py and these are intended for the automated testing of NanoCam
and radio payload subsystems respectively. The classes of both of these create an
instance of CubeSatAutomation class, instead of calling for specific functions or
methods of that class from the outside. By doing this, the class variables including
handle to the automated process, socket address and others are passed to all these
other classes as well. The methods of these classes thus use the methods of
CubeSatAutomation directly.
The specific methods defined by the NanoCam test automation library are presented
below as Robot Framework keywords:

Camera Startup <timeout>
Reboots the camera and downloads parameter Table 1 from the subsystem. Timeout
specifies the time that we wait for the camera subsystem to come online in satellite
bus.
Camera Take Picture <timeout> <store format> <filename> <auto-
gain>
Sets image format and filename in the camera and takes a picture with the given
autogain value (empty at default). Keyword fails if the image is too dark (less 5 %
light) or too bright (over 95 % light).
Camera Load Picture <stored file> <loaded file>
Downloads the file stored in NanoCam to the PC running the CSP client program.

The subsystem specific keywords for the radio payload are defined as the following:

Radio Startup <switch input> <switch power> <antenna input>
Sets up and starts the radio payload. The antenna and switch to be used can be
additionally defined.
Radio Powerdown
Turns off the radio payload.
Verify Radio Status
Checks for the status of the Si4740 chip.
Run Radio Mode <parameter file> <property file> <mode> <mode
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arguments
Runs one of the radio operation modes defined in section 2.5.3.
Verify Radio Results <buffer file> <timeout>
After the operation mode is completed, inspects the outputs that the payload sent
and fails if certain outputs contained errors tied to the operation of the Si4740 chip.
Radio Load Data <stored file> <loaded file> <timeout>
Downloads a measurement done by the radio payload.
Radio Plot Data <file> <output file> <plot image>
Draws a graph from downloaded radio measurement data.

3.2.3 Robot framework test suites

The test cases follow the keyword-driven approach and the keywords are written to
be short and mostly to be non-specific to the test case. The functions and methods
written in Python and described in the previous section are used directly as such.
This is because, the approach was to make a smaller set of versatile and generic
keywords that could be used over many test cases and test suites. This approach was
felt to be more efficient as there would be less need to maintain the test suites if they
did not have large set of specific, though descriptive keywords, which is common
with the Robot Framework. Besides, the Suomi 100 satellite project is not a typical
software project where stakeholders would go over the test suites and validate them.
All people involved in the project have a technical background. In addition, having
a set of general keywords that are not entirely tied to Suomi 100 is beneficial if some
future satellite project wishes to use the testing methods and tools described in this
thesis.

Each of the test cases are tied to a particular operation mode. The operation
modes are discussed in detail in section 2.5. The purpose of each test case is to
verify the functionality of some aspect of a particular operation mode. Each test
case is marked with the Robot Framework [Tags] marker to identify which operation
mode the test case is related to. In addition, each test case begins with a Satellite
State keyword defining the state of the satellite. For example, one such state is
when the satellite has restarted itself. This keyword was written in order to make
the test cases independent of each other and to have a degree of reproducability for
the tests. In some cases, the test cases need to be dependant on each other and in
such cases the satellite is not specifically set to a certain state. Such states are called
as Unknown and Communicating, for example.

The test suites are divided firstly based on the four different larger features that
are tested with the Suomi 100. Namely, separate sets of test suites are written for
camera payload, radio payload, NanoEye basic functionality and for the "Day in the
life" testing. Each aspect of a feature further divides the test suites into test suites
testing different parts of a particular feature.
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3.3 Test setups and environment simulation
The different aggregates for testing of the Suomi 100 were defined in section 2.4.
For simulating the functional environment of the satellite for these different types
of tests, four different environments were set up. Two different environments for
testing two different payloads (1 & 2), one for testing basic operational features of
the NanoEye platform (3) and one larger environment for the operational scenario
testing of the satellite (4).

3.3.1 Camera payload testing

For the testing of the NanoCam and the imaging operation mode, we tried to find
something facing the camera with similar color and brightness values as what the
camera would see while in orbit. The easiest solution would be to simply take the
whole integrated satellite outside on a bright day to the balcony on top of the TUAS
building in Aalto University at Maarintie 8. The satellite stands on top of a stand,
and the side with the camera lense is directed towards horizon. A PC with the
CSP client and the test automation tools are connected to the satellite via the USB
connection on the NanoUtil. In addition, the satellite is loosely enclosed in a plastic
container to protect it from particles in the air. Figure 20 below shows the test setup
used during the testing.

Figure 20: Suomi 100 satellite on a balcony during imaging mode tests.

3.3.2 Radio payload testing

The environment for the testing of the radio payload is set up in the clean room
of Aalto University’s space laboratory. The satellite is connected via the USB
connection to a PC with the CSP client software and the test automation tools. The
functional environment is simulated with a radio signal source in order to create
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some artificial noise in radio frequencies that would mimic the radio signals present
in the ionosphere. The radio noise is generated with a HackRF One Software Defined
Radio (SDR), which is connected to another PC running GNURadio signal processing
software. Figure 21 shows the setup for the testing of the radio payload.

Figure 21: Radio payload testing with HackRF One.

The frequencies that are used in the environment simulation are 2 MHz, 5 MHz
and 9 MHz. These were chosen based on the requirements of the payload (should
operate in range of 1-10 MHz) and the limitations of the hardware, as the HackRF
is not able to produce signals with frequencies lower than 2 MHz. Furthermore, the
antennas attached to the payload themselves cannot receive signals that are much
higher than 9 MHz. The middle frequency was chosen to be 5 MHz based on the
research done on the radio signals in the ionosphere. This frequency would be of most
interest to the research conducted by the Suomi 100 satellite mission [73]. Figure 22
shows a Fast Fourier Transform (FFT) plot of the noise that is generated from the
GNURadio, which is then transformed into radio waves by the HackRF.

3.3.3 Satellite basic operations testing

For testing of the basic satellite operational features such as collection of HK and
safe rebooting during an error, no external inputs to the satellite are used. The
satellite is in the clean room of Aalto University’s space laboratory connected to a
PC with the CSP client. In Figure 23 we have a picture of this setup.
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Figure 22: Screenshot from GNURadio signal processing software showing FFT plot
of radio noise being generated.

Figure 23: Setup for testing of basic functionalities of the NanoEye platform. Suomi
100 is on the left and a PC with CSP client, and a PC with the CSP client and the
test automation softwares is on the right.

3.3.4 Operational scenario testing, "Day in the life"

In the "Day in the life" mission operational tests, the Sun is simulated with a 1800
Watt Xenon lamp that is situated approximately 1.5 meters away from the satellite.
Two solar panels are connected to the satellite in the manner they are connected
during flight. The satellite faces the lamp at an angle so that both panels receive
light from the lamp. As the lamp is quite powerful, we can really verify that the
solar panels charge the batteries in the satellite. In addition, the lamp can heat
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the objects it is faced towards, and this was used as a method to add some thermal
features to the test. The idea is to use the lamp for the duration it takes the satellite
to heat up to 50 degrees Celcius under the illumination and then let it cool back to
room temperature (approx. 27 degrees Celsius in the clean room). The heating and
cooling was measured with an FLIR E6 thermal camera, and the heating duration
was measured to be approximately 10 minutes and the cooling down period was
measured to last ca. 20 minutes. In Figure 24 this setup with the solar simulator is
presented.

Figure 24: Day in the life setup for the satellite. The Xenon lamp is on the left and
Suomi 100 CubeSat is on the right in the picture.

For the "Day in the life" testing, these periods form the phases of the operational
mission scenarios. When we pretend that the satellite comes from eclipse, we turn
on the Xenon lamp and we are in communication with the satellite for 10 minutes.
After that, the lamp is turned off and we pretend that the satellite goes out of
the reach of our ground stations and stays there for 20 minutes. In addition, the
communication window of 10 minutes roughly corresponds to the time that we can
be in communication with the satellite during one revolution around Earth by the
satellite.

Unlike in the setups described previously, the control of the satellite happens
via a radio link. An SDR with the model Ettus USRP B200 is connected to a PC
with the CSP client software and the test automation software tools. This SDR is
the one used in the actual ground station and for this testing the SDR and the PC
were located in the next room in Aalto University’s space laboratory. The actual
ground station and all of its hardware is not used because the solar simulator has
to be controlled manually and the ground station is situated several floors up from
the Aalto University’s Space laboratory. Nonetheless, the software and the SDR are
identical to that which will be used in the ground station. Figure 25 presents this
setup.
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Figure 25: Day in the life setup for a "stripped down" ground station.
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4 Results and Discussion

4.1 Executed tests
Different approaches in input selection were followed for the different conglomerations
of tests defined in section 2.5. The collections of tests were defined as: radio payload
tests, camera payload tests, satellite basic operations tests and the "Day in the life"
operational mission scenario tests.

The Robot Framework test suites for the two payloads follow the more lower-level
method of testing in the sense of input selection. Each of the test cases for their
representative operation mode are identical in steps, but use a different combination of
values in the keyword arguments. Since the payloads perform only singular functions,
it was felt that using the lower-level approaches in input selection was necessary to
have adequate test coverage for these payload operation modes. Yet, each test case
was derived from the operation modes defined for the camera and radio payloads.

The test cases and test suites for different basic operations of the satellite are
completely different from each other in design, and the tests here begin to resemble
different smaller scenarios or use cases. Such cases include telemetry gathering, flight
planner commands, software update, etc. In addition, a test suite was written for
testing the restarts of the subsystems and of the OBC and of the whole satellite
as well. The requirements and use cases for the tests were partly derived from the
manuals provided by GomSpace, but mostly these tests were informal in nature as
no specifications were made for these features by the Suomi 100 satellite mission.

The test suites for the "Day in the life" scenarios follow the higher-level satellite
system integration tests where the satellite is tested based on the operational scenarios
defined for the mission. Separate test suites were written for each operational mission
scenario. The test cases at this level are simply different phases in the mission
scenario.

In addition to these test suites, another one was used during the development
of the software for the radio payload. This test suite resembles a smoke test and it
has a limited set of test cases, testing each of the operation modes. Nonetheless, no
proper continous integration chain was done during this time, the smoke tests were
only started manually usually once every week.

4.1.1 Camera payload

The test cases for the NanoCam were identical in structure, or in other words,
several test cases were made for the same use case of the camera payload. The
only difference was that the main parameters, such as gain value and exposure time,
differed between test cases. These two are the main parameters according to the
NanoCam manual provided by GomSpace [60]. Having the exposure time fixed, a
combinatorial test input selection method was used to go over different combinations
of camera parameters. Three different values of the exposure time were used and for
each value, the same parameters other than exposure time were changed in different
test cases. The values used for the exposure time were 10, 30 and 90 milliseconds.
Figure 26 shows the test case structure used in the testing of the camera payload.
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*** Test Cases ***
Imaging mode - Exposure 10000 Gain-Target 60

[Documentation] The onboard camera is used to take images of the
Earth.↪→

[Tags] OPMODE-IMAGING
Satellite State Idle
Camera Startup 15
Verify Startup Camera
Verify Device Detected Camera 5
Set Satellite Parameter Camera exposure-us 10000
Set Satellite Parameter Camera gain-target 60
Set Satellite Parameter Camera gain-global 2048
Set Satellite Parameter Camera jpeg-qual 85
Set Satellite Parameter Camera color-correct true
Set Satellite Parameter Camera gamma-correct true
Set Satellite Parameter Camera white-balance false
Send Satellite Parameters
Camera Take Picture 5000 2 def.jpg -a
Camera Load Picture /mnt/data/images/def.jpg def1.jpg
Log <img src="def1.jpg" width="500" height="500"> html=yes

Figure 26: Robot Framework test case structure for camera payload testing. The
first column represents the command or action performed in CSP client (see section
3.2.2-3.3.3); the second, third and fourth columns define parameter options and
values for the commands.

As can be seen from the example case, the test covers such features as NanoCam
restart and detection in the satellite bus, the setting of different camera parameters
and finally, the taking of images, their storage and transfer from the satellite. All
images taken were then added to the Robot Framework log files, which gives a
comprehensive view on how the different camera parameter values affected the
images taken.

For the environment simulation, the attempt was to find a really sunny day to
give some indication of the brightness of the pictures while the satellite is in orbit.
This was achieved to some extent, but at the start of the test a few clouds appeared
and some pictures turned out very bright and some less so. If the level of light would
have stayed the same during the whole test, better baseline information could have
been obtained about the affects of the different parameters on the images.

Nonetheless, no test cases failed due to software errors. These tests on the camera
suggested that changing different parameters did not stop the software or that any
combination of parameters caused no problems in the functioning of the satellite. It
was additionally observed that the images did not become distorted in any way. Out
of the 39 test cases, 9 failed because the light level was so high that the pictures
became almost completely white due to brightness. Yet, the brightness in space
around Earth is much higher than what it can be here on the surface even on the
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brightest day [74], not to mention the fact that the tests were conducted in Finland
during autumn. Thus, increasing the exposure time or gain value while in orbit
would make the images to be too bright and therefore, setting the camera parameters
to their default values would possibly give the best pictures. One should recall that,
the automation of these tests was the first time that the developed test automation
libraries along with the Robot Framework were used to properly test the Suomi
100 satellite and therefore these tests worked as a technology demonstration as well.
Figures 27 and 28 show some pictures taken with the NanoCam camera by the test
automation tools.

Figure 27: Picture taken at Maarintie 8, Espoo, with NanoCam integrated on the
Suomi 100 satellite. Camera parameters were set to the default values provided by
the NanoCam manual [60].

Most importantly, the tests demonstrated that the integration of the camera
subsystem with the rest of the satellite was succesful. In fact, there was a defect in
the integration of the camera with the satellite at the first time the satellite platform
arrived to Aalto University. The camera lense was too far away from the cell in
the PCB of the camera subsystem, and thus the first test pictures taken with the
camera were distorted. The manufacturer of the satellite platform provided a test
picture which showed that the camera was working properly, but it seems that they
did not test the camera after it was integrated to the satellite. After this problem
was found, GomSpace provided a new camera and the integration done by us worked
properly. The Robot Framework tests worked thus also as the verification tests for
the integration of the NanoCam subsystem to the satellite platform.

Selection of the inputs to the system and the structure of the use cases in the tests
are viewed as adequate for verification of the main functionality of the NanoCam
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system. However, certain other features of the camera, such as image thumbnail,
could have been tested instead of certain image enhancement tests now conducted.
Nonetheless, the main functionality of the camera was verified and the Imaging mode
operation mode was validated to be an executable use case of the satellite system.

Figure 28: Picture taken at Maarintie 8, Espoo, with NanoCam integrated on
the Suomi 100 satellite. Camera parameters were set to use exposure time of 30
milliseconds and to use no gamma correction.

4.1.2 Radio payload

During the development of the software for the payload radio, a small test suite was
used for smoke testing of the software and the payload. Basically, the test cases
tested that the general commands are executed without errors and that the radio
can output data. This test suite was also used when the payload was integrated into
the satellite.

The three tests in this suite were run at least once a week during the development of
the software, but a proper Continuous Integration/Continuous Development (CI/CD)
pipeline was not used where, for example, uploading or flashing of a new software to
the NanoMind would have caused these test to run automatically.

Besides the aforementioned smoke test, a more comprehensive set of test suites was
performed for the radio payload after it was confidently integrated into the satellite
platform. As the hardware and software were of designed in Aalto University and the
system integration occurred with a platform manufactured by another organization,
these tests took the longest time of all the automated tests performed on the Suomi
100 satellite. A few sessions were held where these comprehensive test suites were
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run for the radio payload and each time new defects in the software and in the
integration were found. Of all the tasks related to the Suomi 100 satellite, the proper
integration of the radio payload to the GomSpace 1U NanoEye required the most
effort from the satellite team.

The test cases for the radio payload followed the lower-level testing method in a
way that all the the test suites for a given radio operation mode had the same test
cases, but the frequency used was different. In other words, singular functionalities
were tested with varying input values. In addition, the test suites for different radio
operation modes differed as each had slightly different parameters. These test suites
then covered some amount of different parameter combinations, and as with the
camera payload, the measurement data was downloaded from the satellite and then
processed and plotted before the figures were added to the Robot Framework HTML
log files. In Figure 29 is an example of the test case structure used in testing of the
radio payload.

*** Test Cases ***
Lowobs Mode - 5 Mhz Default parameters

[Documentation] The payload radio records signals on a single
frequency.↪→

[Tags] OPMODE-LOWOBS
Satellite State Reboot
Radio Startup 3 0 1
Verify Startup Radio
Verify Device Detected Radio 5
Verify Radio Status
Store Client Responses Lowobs Mode 80 15
Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 2

0;5000;100;100;100;0;0;↪→

Sleep 2
Get HK 30 2 1 1 5 2 /flash/hk_test_lom
Send Beacon 10 4 1
Sleep 10
Verify Radio Results Lowobs Mode 80
Radio Power Down
Radio Load Data /flash/data/m2_debug.dat m2_debug1.dat
Radio Plot Data m2_debug1.dat m2_debug1.txt m2_debug1.png
Log <img src="m2_debug1.png" width="640" height="480"> html=yes

Figure 29: Robot Framework test case structure for radio payload testing.

The most interesting information about the payload operation was found from
the CSP client replies outputted to the log files. What was measured was static and,
as such, nothing too much could have been said about the test cases just by looking
at the measurement plots. Beyond the fact that the values were not zero or that
there was actual variance in the values measured. In Figure 30 is one plot produced
from a measurement made with the radio while the satellite was at the laboratory at
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Aalto University and no external radio signal sources were generated for testing.

Figure 30: Plot of 100 000 measurements of radio static made by the radio payload
at 5 MHz. The vertical axis gives the measured electric field in millivolts.

During the integration and testing of the radio payload, several problems occurred.
The outputs of the CSP client shown in the test log files and the plots produced by
the test automation tools, gave indications about problems in the operation of the
payload. Therefore, a further investigation of the operation of the radio instrument
was conducted. The identified problems can partly be attributed to be emergent
problems in integration. For one, the payload was developed so that a RaspberryPi 3
computer simulated the OBC. This computer has a Quad Core 1.2 GHz processor
from Broadcom [75], and the processor in the NanoMind OBC in Suomi 100 is a
32 MHz processor with a single processor core [57]. The data from the payload can
be read and stored within 31.25 microseconds with the RaspberryPi 3 in order to
have a sample rate of 32 kHz at lowest. The reading and storing with NanoMind,
however, takes considerably longer, over 60 microseconds approximately.

In addition, the data needs to be read two times before obtaining a completely
new measurement value. This is because the payload outputs the data from two
audio channels, left and right, and data is read from one channel at a time. Therefore,
with the NanoMind OBC, a sample rate of approximately 8.3 kHz can be obtained
theoretically. Straightforward calculation for this sample rate can be seen in Equation
1.

1
data reading and storing time (s) × 2 = 1

60 µs× 2 ≈ 8.3 kHz (1)

In addition, it was found that the reading and storing even at this rate is not
consistent as the FreeRTOS runs other tasks while data is read from the payload.
Figure 31 shows a screenshot from a Tektronix TBS 1072B-EDU oscilloscope reading
the slave select pin from the payload. When the value of the slave select is low, a
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single reading of data from the instrument has occurred. In an attempt to counter

Figure 31: Screenshot from a Tektronix oscilloscope showing inconsistency in data
reading rate from the radio payload instrument.

the inconsistent reading, the priority of the FreeRTOS task assiocated with the
operations of the radio instrument was increased to highest among all of the tasks
in NanoMind. This failed to improve the situation though. Thus, the task was
made to call for a FreeRTOS vTaskSuspendAll() command, which would give all
the processing power of the processor for the radio operation task and freeze all the
other tasks in the OBC. This caused an unidentified watchdog task to reboot the
computer, which possibly assumed that the computer was "frozen" and, as a safety
feature, restarted the computer.

Therefore, as a compromise the sample rate was dropped down to 1 kHz. This
was done by adding a vTaskDelay(1) command to the FreeRTOS task of the radio
payload operation after every read and store cycle. This was the shortest time that
could be added to the radio operation task, a shorter wait time would have possibly
given a higher sample rate. This would additionally require modifications to be
made to the general definitions of the NanoMind code, which could have caused
unforeseen consequences for the operation of the satellite. Figure 32 shows that at
certain periods data can be obtained more consistently. Yet, during a longer time
period, there still exists longer gaps between data reading events than anticipated.
Nonetheless, this data rate was felt to be good enough for our basic scientific needs.
The recording of any proper "real-time" human listenable radio signal, such as speech
or music, is not feasible with this current setup. With a 1 kHz sample rate the signal
data does not have enough resolution for the signal to sound reasonable to human
ears.

In addition to the data rate problem, some problems were discovered in the
payload and the NanoMind themselves. For the command to tune the frequency
in the Si4740 IC, an automatic antenna capacitance calculation was supposed to
happen for a given frequency. Yet, from the Robot Framework log files, it was found
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Figure 32: Screenshot from the oscilloscope showing better consistency with lower
sample rate in data reading rate from the radio payload instrument.

that the antenna capacitance value was always 1. Thus, a separate routine had to be
written to the NanoMind which calculates the capacitance value. In the consequent
tests run with the test automation tools after this modification, the values seemed
to be correct, and could also be seen from the figures plotted from the measurement
data.

Another issue which was encountered involved the GPIO pins in the NanoMind.
The radio payload would have needed four pins, yet only three out of six worked.
Nevertheless, changing the purpose of these three pins in relation to the radio
instrument was sufficient. This in fact made it possible for data to be read from the
instrument in the first place.

As a conlusion to the radio payload, the subsystem would have required its own
processor and its own flash memory in order to a have higher sample rate with
more consistent data reading and storing. This is the case for instance with the
NanoCam subsystem, which has a 536 MHz processor and 2 Gigabytes of non-volatile
memory for image storage. Nonetheless, even with a very low sample rate, valuable
information from the ionosphere can be gathered and sent back to Earth [73].

The collection of inputs selected for testing are in hindsight viewed as more than
adequate. Both of the antennas were ultimately verified to work and the calculations
of different statistical values from the measurements were proven to function as
expected. As a whole, the tests chosen had a large coverage of different aspects of
the system.

4.1.3 Satellite basic operations

Testing of the basic functionalities of the satellite software is necessary in order to
obtain a reliable satellite [16, 25, 45]. Therefore, tests were performed for satellite
platform features such as safe satellite restarts, different HK commands, flight
planner commands and flight software updating. All of these can be seen as the basic
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functionalities which all of the other operations of the satellite depend upon. As no
requirements were defined by us for these features, this testing is, therefore, informal
in nature. Nonetheless, execution of these tests was felt to be necessary.

Test suites for these features in regards to the input selection, do not follow the
lower-level methods used for the two payload subsystems. Instead, test cases are
based on different use cases or different situations which the satellite might face.
In addition, the keywords used were less subsystem specific, and more of the test
cases used the generic keywords, such as Send Command and Verify Reply Contained.

Restart tests
Twelve test cases were written for satellite reboots during different situations. The
goal of these tests was to find out if during some operation, e.g. file upload, the
NanoMind can become "frozen" so that it is no longer able to restart properly. This
test suite additionally has test cases only for shutting down different subsystems and
to verify their absence in the satellite bus with the ping command. From these test
cases, it was found that the NanoCom communication system could not be shutdown
completely. It still replied to the ping commands even though a command was sent
to shut it down. This functionality naturally is preferable and though this caused one
test case of the restart test suite to fail, the test can be seen to have failed positively.
As such, eleven test cases passed and one failed positively from this test suite. A few
Robot Framework test cases are presented in Figure 33.

The other types of test cases in the restart test suite tested system resets during
satellite operations, and the restarts were mostly caused by adding reboot commands
to the flight planner so that they would occur during some satellite operation, e.g.
during radio payload operation. In all of these, the satellite came back safely. Yet,
it has been witnessed several times by us that the NanoMind can get stuck and
in those situations in order to get the OBC working again, it was necessary to
manually restart the EPS or send a command via another subsystem to reboot
the NanoMind. The satellite recovered safely from these situations after restart.
Fortunately, when using the CSP client over the radio link, rebooting of the system
has been possible. Nonetheless, this situation brought up the question whether there
can happen something during orbit that causes the satellite to be "frozen" forever.

There are several watchdogs in the satellite that in theory can trigger a reboot
after a certain time. Unfortunately, a situation could not have been deliberately
made where the NanoMind becomes stuck. Therefore, tests for these watchdog
functionalities had to be omitted from the test suite.

Housekeeping tests
Another eleven test cases were performed to test the HK features provided by the
GomSpace platform. Test cases were written for different HK commands of different
subsystems as well as for HK data storing and transfer from the satellite. Testing
of the beacon functionality was as well included in this test suite, as the beacon
outputs recent HK information. Two test cases are presented in Figure 34.

Plotting of the beacon data was developed during the realization of these tests
by another member of the satellite team, M.Sc Petri Koskimaa, and by the thesis
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*** Test Cases ***
EPS reboot

[Documentation] Reboot satellite by rebooting EPS
[Tags] OPMODE-POWER
Satellite State Unknown
Send Command reboot 2
Verify Reply Contained Welcome to nanomind

Wait Until Reply Contains Mount ok

OBC reboot
[Documentation] Reboot nanomind OBC
[Tags] OPMODE-POWER
Satellite State Unknown
Send Command reboot 1
Verify Reply Contained Welcome to nanomind

Reboot occuring during file upload
[Documentation] Reboot satellite during file transfer
[Tags] OPMODE-COM
Satellite State Reboot
Send Command cmp route_set 1 1000 8 1 KISS
Send Command fp server 1 18
Create Flight Plan Reboot reboot 2 30
Send Command ftp server 1
Send Command ftp upload_file nanomind2.bin
/flash/nanomind_up.bin↪→

Wait Until Reply Contains Welcome to nanomind
Wait Until Reply Contains Mount ok
Wait Until Reply Contains Timeout

Figure 33: Robot Framework test case structure for testing satellite restarts.

author. These plotting functionalities were later used in the "Day in the life of the
satellite" tests as well. All test cases of this test suite passed without errors. This
means that, all the commands did what they were supposed to execute, which was
obviously the preferred result. In Figure 35 we have an example picture of a plot
of the system current provided by the beacon at different timestamps. At certain
points in time there are ten datapoints due to the beacon feature used in the way
that it takes multiple pulls of the system state when it is called. An average for the
milliamperes is presented by the dashed red curve. The time is presented in the
vertical axis in Unix time format. Implying the time in seconds that has elapsed
since 1st of January 1970 [72]. The time is in this format because the satellite tracks
time in Unix time [57].

If the presentation of the full Unix time is omitted, at the first beacon data
collection at approximately 760 seconds, the satellite has been restarted by power
cycling the EPS and HK data collection has been turned on. Right prior to the next
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*** Test Cases ***
Download and verify housekeeping

[Documentation] Call EPS housekeeping routine
[Tags] OPMODE-POWER
Satellite State Reboot
Send Command cmp route_set 1 1000 8 1 KISS
Send Command ftp server 1
Run Keyword And Ignore Error Send Command ftp rm /flash/hk_robot.dat
Send Command rparam download 1 19
Set Satellite Parameter Nanomind col_en 1
Set Satellite Parameter Nanomind store_en 1
Send Satellite Parameters
Send Command hk get 0 1 1 0 /flash/hk_robot.dat
Sleep 5
Send Command ftp server 1
Send Command ftp download_file /flash/hk_robot.dat hk_robot.dat
Sleep 5
Verify Reply Contained 1/1

Get EPS HK directly
[Documentation] Call EPS housekeeping routine directly
[Tags] OPMODE-POWER
Satellite State Unknown
Send Command cmp route_set 2 1000 8 1 I2C
Send Command eps hk
Verify Reply Contained Voltage
Send Command eps hksub vi
Verify Reply Contained Vbatt
Verify Reply Contained Isun
Verify Reply Contained Isys

Figure 34: Robot Framework test case structure for radio payload testing.

data point at 825 seconds the NanoCam has taken a picture and the same operation
was performed right before beacon collection at subsequent points approximately
at 875 and 925 seconds. In addition, there was a 20 second wait time between each
operation of the camera. From the curve presenting the average of the currents
collected via the beacon, it can be seen that operating the camera payload increases
the overall current in the satellite system.

Flight planner tests
For testing of the flight planner feature, seven test cases were performed. The fea-
ture was tested with some basic flight planner creation commands as well as with
more complicated ones. Out of all these tests involving the basic functionalities of
Suomi 100, this one had the most failed test cases. Firstly, it was assumed that
giving the commands in an uncorrect format (string instead of an integer) would
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Figure 35: System current from the beacon data during imaging mode operation
mode. The vertical axis shows the system current in milliamperes. Time is shown in
seconds since beginning of Unix time. Average for the system current is presented by
the dashed red curve and blue dots illustrate singular data points.

cause the CSP client to indicate an error. Such a thing did not occur, but giving
the commands in the wrong format did not cause the software to crash either. In
addition, if the command string was too long, an error was indicated and no flight
planner command was appended to the flight plan list. This turned out to be the
case with one specific command for the radio payload; but this command to run the
radio payload in one of the defined operation modes happens to be the single most
essential command for the payload. Therefore, in order to make it work, the source
code for the flight planner was modified so that it is able to accept longer strings
as commands. Otherwise, the radio payload can be used only when the satellite
is within the reach of the ground station communication radios. This is not pre-
ferrable as the area of the ionosphere that can be measured would be radically limited.

Software update tests
Three test cases were performed for the software update feature. These tests took the
longest time to execute as new software had to be uploaded to the satellite in each
test case. These cases tested the basic uploading of a new software image, restarting
back to the software that was flashed to the NanoMind, and tested the uploading of
an invalid file as an image to the new software. The satellite passed all these tests
as expected, giving some confirmation that a new software image can actually be
safely uploaded to the satellite, and the OBC can be commanded to restart with
that software.

In the test case where an invalid file was uploaded as an image, the file itself was
just a binary file containing measurement values from the payload radio. Restarting
with this file caused the NanoMind to reset with the EXCEPTION 13 error message.
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In addition, the NanoMind was set to try to boot with this file three times and it
reset each time with the same error. Eventually as the boot counter reached zero,
the satellite managed to recover the proper software it was flashed with. This test
provided knowledge that the satellite manages to recover itself if a software image
happens to be uploaded to the satellite that causes unexpected restarts.

As a conclusion to the testing of the core features of the satellite, the tests are
observed to cover adequate amount of these features. However, the testing was not
conducted over the radio link, which would have given significantly more value to
these tests. Especially for testing of HK collection and software updates. Nonetheless,
some of these tests were again conducted during the "Day in the life" testing, and
this testing was performed via the radio link.

4.1.4 "Day in the life" operational scenarios

Test suites were formed to test different phases of the scenarios that the satellite
is likely to encounter while in orbit. A scenario would be, for instance, where the
satellite travels in the orbit to the reach of the ground station, commands are sent to
the satellite and data is downloaded. Each step in the scenario, such as downlinking
of data, formed its own test case within the test suite. Four different operational
scenarios were tested. These are described as:

1. scenario: The satellite comes from eclipse and is within reach to form a radio
link with the ground station. Housekeeping data is gathered, the satellite takes an
image and a measurement is made with the radio payload. Afterwards, the house-
keeping data and the measurement are downloaded from the satellite. Finally, the
satellite goes beyond the reach of the ground station.

2. scenario: The satellite comes from eclipse and is within reach to form a radio
link with the ground station. Housekeeping data is gathered and the flight planner is
used to set the camera to take a picture while the satellite is in eclipse and out of the
reach of the ground station. After the satellite has orbited the Earth, the satellite
comes again from the eclipse and is in the reach of the ground station. Housekeeping
data and the taken image is downloaded from the satellite. The satellite goes again
out of sight of the ground station.

3. scenario: The satellite comes from eclipse and within the reach to form a
radio link with the ground station. Housekeeping data is gathered and the flight
planner is used to set the camera to take pictures continuosly. The flight planner
is used to gather housekeeping data continuosly as well. A sudden restart happens
and the presence of all subsystems is verfified after restart. The camera is given a
command to take a picture to verify the basic operation of the subsystem. In addition,
verification for the charging of the batteries via the solar panels is verified. Finally,
the housekeeping data is downloaded from the satellite.

4. scenario: The satellite comes from eclipse and is within reach to form a radio
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link with the ground station. Housekeeping data is gathered and a file is uploaded to
the satellite. Finally the satellite goes out of sight of the ground station.

One test suite for each scenario was written. Different test cases in the suites
were made to represent different phases in the scenarios. The majority of the
keywords used in the test suites were the Persistent Command and Verify Reply
Contained keywords. Persistent commanding was required for the majority of the
commands because the radio link was not entirely stable. The test suites were
executed several times and occasionally some keywords caused the test cases to fail
due to the connection being temporarily lost. A complete test suite for the first
scenario can be seen in Appendix C.

Control of the solar simulator was not automated due it being simply a lamp that
one attaches to an electric plug socket to turn it on. Thus in practice the person
responsible for the testing had to manually plug and unplug the simulator from the
mains current. Therefore, additional keywords were written for these tests which
with a sound effect indicate that the lamp has to be turned on, or to be turned off,
according to the time periods explained in section 3.3.4. These are the Wait And
Notify, Notify After, Wait Until Time event keywords.

One important aspect with these tests was verification that the solar panels were
able to charge the batteries. All the test suites had at least one test case for battery
charging verification. In all such cases, the solar panels were detected in the satellite
bus and they did infact charge the batteries. As presented in section 2.1, one of the
potential causes for failures with previous CubeSats has been that the solar panels
were not properly connected to the power bus [16]. Thus, testing of this was felt to
be crucial.

Figure 36 shows how the charge in the batteries changed over the execution of
the first scenario. There are ten data points at each point in time where the beacon
feature was called. The dashed red curve shows average of the recorded millivolts.
The time is presented in the vertical axis in the Unix time format. If presentation of
the full Unix time is omitted, at approximately 160 seconds the first HK data through
the beacon has been gathered. Recently prior to this, the OBC has been restarted.
Before the consequent points at approximately 220 and 225 seconds, nothing more
than HK collection features have been turned on.

At approximately 255 seconds the battery voltage shows an increase, which
indicates that the solar panels have begun to recharge the batteries. In addition,
prior to this data collection the camera was operated and the taken image was stored
to the NanoCam. flash drive. An increase is again shown at the next HK collection
at approximately 380 seconds. Before this point in time, the ADCS has been turned
off and the radio payload has ran second mode of the radio operation modes. The
final collection point was taken after radio measurement data had been downloaded.
It can been seen from the dashed red curve that the battery voltage shows a steady
increase when the satellite was under illumination, even though the satellite operated
both of its payloads during this time.

Concurrently, all the test cases for scenario 1 were executed succesfully. The HK
data and radio measurement were downloaded from the satellite succesfully via the
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Figure 36: EPS battery charge from the beacon data during the first satellite
operational scenario. The vertical axis shows the system voltage in millivolts. The
red dashed curve presents average of the battery voltage and blue dots illustrate
singular data points. Time is shown in Unix time in the horizontal axis.

radio link. Similarily, all test cases for scenario 3 succeeded. A reboot was caused in
the satellite and all the subsystems responded to ping commands after the restart.
The satellite was able to again take an image and it was verified that the solar panels
were again charging the satellite. The test cases for scenario 4 were passed as well
and a file was uploaded succesfully to the satellite.

Some problems were identified with the tests for scenario 2. Namely, the download
speed was too slow to enable downloading of an image from the satellite during
the time defined for the scenario. As presented in section 3.3.4, the time that the
satellite within the sight of the ground station is approximately 10 minutes. The
image taken by the camera was roughly 300 kilobytes in size and during the time it
was downloaded, roughly 53 kilobytes were received.

One reason for the slow download speed was the setting for the CSP client rdpopt
command, which controls the wait times between each packets received and other
commmunication related features. With a short wait time, the time between received
packets is shorter, but the connection during downloading can be lost more frequently.
With a longer wait time, the speed is lower but the connection is more stable. The
maximum speed for the hardware of the NanoCom subsystem is 115.2 kb/s, but the
bandwidth allocated for the Suomi 100 satellite requires to set the maximum speed
to 0.9 kb/s. From the test suite logs produced by the Robot Framework, it could
be seen that at best data could be received at the speed of 0.3 kb/s. Therefore, fine
tuning of the rdpopt command’s parameters would be needed in order to make the
download faster in practice.

It has to be noted about these tests, that an actual "Day in the life of a satellite"
test was not conducted as no continuous testing lasting 24 hours or more was
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performed. A test lasting that long would have demanded a lot from our limited
resources with three active members in the satellite team. Nonetheless, the individual
scenarios were tested multiple times and some consecutively several times. Therefore,
it could be said that the satellite was tested for "half a day" at the longest.

A second aspect missing from the testing was the simulation of radio propagation
through the space around Earth. Certain attenuators could have simulated the
environment and the distance from the ground station to the satellite. However, this
would possibly have required the actual ground station to be used in the tests and
as noted, such a test would have been something outside our resources. Yet, the
NanoCom communication subsystem has flown earlier in several missions and thus
there is certain confidence that the system will function properly over the actual
distance.

As a conclusion, it was verified that the solar panels did charge the batteries and
the communication with the satellite over the radio link worked. All the commands
sent to the satellite worked as they were supposed to according to the GomSpace
manuals. Only the download speed was slow with the parameters given to the rpopt
command in the test. Thus, a full picture could not be downloaded from the satellite.
Besides this, all the test cases passed.

From all the tests performed for the Suomi 100 satellite, the "Day in the life"
testing conducted is perceived to be the most important one. The most important
aspects of the mission were verified to operate properly. Albeit, in a significantly
less demanding environment than what the satellite will face in orbit. However, as
noted, full simulation of the environment is outside of the resources available to the
Suomi 100 satellite team.

4.2 Release version of CubeSatAutomation test library
As was already stated in Research purpose and goals in Section 1, the goal was to
create a reusable test automation function library. Other satellite teams working
with testing of their systems could utilize this funtion library along with the Robot
Framework to automize and bring a systematic nature into their testing. Basis for
this library was the libraries used in testing of Suomi 100 and several features were
preserved while others were omitted from the final function library. Notably, all the
Suomi 100 specific keywords and routines were removed. In addition, some changes
to the preserved keywords were made.

One essential change was the completion of the network socket based communi-
cation with the system under test. With the core library used in testing of Suomi
100, only the stdin was used when replies were read from the CSP client. In the
final CubeSatAutomation library, replies from a program can be read through the
socket connection as well. In addition, several of the keywords try to choose the
communication between network socket and stdin/stdout console communication. If
a socket object is found to be defined in the class variables of the function library,
then socket connection is used for sending commands as well as receiving responses
from the SUT. If not, stdin/stdout is used for the communication, with no visible
difference in the keywords when they are called in the test cases. The socket commu-
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nication was tested to work with RaspberryPi 3 through an Ethernet cable. For this
purpose a program using the source code listed in Appendix B was written to the
RaspberryPi as a crude endpoint software.

Having two methods of communication with the system under test gives certain
benefits. For example, a ground station software or a flight software in a simulated
desktop environment can be tested locally by using the console communication.
When using the network socket for communication with the SUT, testing can be
performed on the target hardware (e.g. a subsystem or an integrated satellite) as
well if the hardware has networking capabilities. A separate computer which has
networking capabilities could be used for directly controlling the target hardware if
the SUT doesn’t provide methods for network connection.

To support testing on a remote system, new keywords for remote program
startup and termination were developed. For these operations, the keywords use the
Secure Shell (SSH) communication provided by the Python Paramiko library. This
communication method is only used for the aforementioned actions, but a future
update to the library could additionally include SSH based command sending and
response receiving.

Naming of certain keywords was changed as well. The keywords related to
program startup and shutdown now have a more generic Program as the first word.
Client was used as the first word in the original version due to the ground station
software being named CSP client. In addition, configuration files could be passed
to certain keywords in the Suomi 100 test automation libraries and that feature is
preserved in the release version as well. The keywords related to program and socket
setup accept configuration files as keyword arguments. When such a file is given,
the content of the file overrule any other arguments passed to the keyword. The
source code for the final CubeSat test automation library is listed in Appendix A
along with example of a configuration file. In future the library could be written to
be more modular with the class methods separated into different Python modules.
Listing of such implementation was felt to complicate the source code presentation
in the Appendix of this thesis.

However, the source code was added to a Git at https://github.com/Juha-
MattiLukkari/cubesatautomation. New versions of the test automation library
can be obtained from this website. In addition, Robot Framework examples of how
the library can be utilized in testing exist in the Git.

In Robot Framework format, the keywords available in the final function library
are the following:
Program Start <program> <parameters> <config file> <wait>
Starts the program that is to be automated. Parameters to the program can be
defined and both of the arguments can be read from a configuration file. Wait for
<wait> seconds to let the program start properly.
Program Close
Closes the program and a possible socket assiocated with it.
Connect Socket <server> <port> <config file> <wait>
Opens a socket connection to a defined server and port address. These values can be
read from a configuration file as well. Wait for <wait> seconds to let the connection

https://github.com/Juha-MattiLukkari/cubesatautomation
https://github.com/Juha-MattiLukkari/cubesatautomation
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be established fully.
Close Socket
Closes the opened socket connection.
Remote Program Start <program> <server> <port> <username> <pass-
word> <config file> <wait>
Starts a program on a remote server using SSH. All the arguments for this keyword
can be read from a config file. Wait for <wait> seconds to let the program start
properly.
Remote Program Close
Closes the SSH connection and terminate the opened program at the remote system.
Send Command <message> <option> <timeout> <read timeout>
Sends a message and read replies through socket connection. The reply can be stored
temporarily or discarded. Read replies for <timeout> seconds, with <read timeout>
seconds between each attempt to read data.
Write Command <message> <option> <timeout> <read timeout>
Writes a command to the standard input and reads a reply from the standard out-
put. The reply can be stored temporarily or discarded. Read replies for <timeout>
seconds, with <read timeout> seconds between each attempt to read data.
Type Command <message> <option> <timeout> <read timeout>
Types a command by automating keypresses on the keyboard and reads a reply from
the standard output. The reply can stored temporarily or discarded. Read replies
for <timeout> seconds, with <read timeout> seconds between each attempt to read
data.
Persistent Command <message> <exception replies> <end reply> <time-
out> <read timeout>
Writes a command persistently to the SUT through the communication method
defined earlier until a defined reply is read, a specific error reply is read or a timeout
value is reached. Try to read replies for <read timeout> seconds between each
attempt.
Verify Reply Contains <message> <timeout> <read timeout>
Reads several lines through the established communication route and tries to find for
a defined message from the lines. Read replies for <timeout> seconds, with <read
timeout> seconds between each attempt to read data.
Verify Reply Contains Not <message> <timeout> <read timeout>
Reads several lines through the established communication route and tries not to
find for a defined message from the lines. Read replies for <timeout> seconds, with
<read timeout> seconds between each attempt to read data.
Verify Reply Contained <message>
Tries to find a defined message from the replies that were stored by an earlier com-
mand.
Verify Reply Contained Not <message>
Tries not to find a defined message from the replies that were stored by an earlier
command.
Wait Until Reply Contains <message> <timeout> <read timeout>
Reads replies through the established communication route until a defined message
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is found or a timeout is reached. Read replies for <timeout> seconds, with <read
timeout> seconds between each attempt to read data.

Clear Messages <option> <read timeout>
Reads messages through socket for <read timeout> seconds and discards them.
Replies that were stored earlier can be chosen to be removed.
Clear Replies <option> <read timeout>
Flushes the standard output and reads replies for <read timeout> seconds and
discards them. Replies that were stored earlier can be chosen to be removed.
Clear Stored Messages
Empties all the stored replies.

4.3 Improving CubeSat reliability: "Day in the life of a
CubeSat" test

Currently, the CubeSat standard demands the following tests to be performed for a
satellite: Random Vibration, Thermal Vacuum Bakeout, Shock Testing and Visual
Inspection [9]. These are demanded only for the reason of ensuring safe integration
of the P-POD deployer and the CubeSat into the launch vehicle. Usually, the
specifications for these tests usually are in fact defined by the launch provider [9].

As can be seen, no testing is required for electrical or functional/operational
testing of the satellite at the system integration level. In the research data represented
in section 2.1, it was found that failure rates from 40 % to 20 % were prevalent in
CubeSat missions [16, 14, 17]. In addition, it was suggested that these high failure
rates were attributed to poor or nonexistent functional system integration testing.
More so, understanding of integration and testing can be something lacking from
the university-led CubeSat teams. In comparison, the CubeSat missions that were
led by organisations and companies with vast experience in satellite integration and
testing had considerably lower failure rates. Therefore, we strongly recommend that
at least some form of guidelines for functional system integration testing should be
added to the CubeSat project concept. A further detailed study for creation of such
guidelines is deemed to be necessary.

In section 2.1.5, the represented research on failures with larger spacrafts high-
lighted the lack of proper integration and testing as a source of mission failures. In
addition, when the established testing practices used in NASA were "streamlined",
consequent missions showed significant increase in failures. When comparing the
data from failed CubeSat and traditional space missions, it could further be claimed
that at least some guidelines for system integration testing are needed to be included
in the CubeSat project.

4.3.1 Test design

"Day in the life" operational mission scenario tests are required for NASA and ESA
missions [44]. Besides the mechanical tests mentioned, a test following this principle
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could be devised as a recommended guideline for functional CubeSat testing. This
test could be known as "Day in the life of a CubeSat", following the methods
described in sections 4.1.4 and 3.3.4. A test such as this would test the functionality
and proper integration of the satellite. The communication with the ground station
could likewise be verified. In theory, this test could decrease the amount of DOA
cases for CubeSat missions. As noted in [15, 16] one of the alleged reasons for early
CubeSat failures has been improper integration of the solar panels to the satellite,
and thus not having enough power to form the radio link with the ground station.
A test such as the one discussed here could verify these two aspects of the mission
while the satellite is still on the ground.

In fact, a study done in NASA during 2017 came to similar conclusions about
the "Day in the life" testing for CubeSats [76]. A recommendation was set forth for
a test such as this by operating the satellite via the ground station and performing
nominal operations of the satellite. In addition, using a solar illuminator to verify
battery charge/discharge was recommended to be included in this test. As noted,
these aspects were tested for the Suomi 100 in this thesis, and recommended as the
"Day in the life of a CubeSat" test in this thesis. However, this work performed with
the Suomi 100 was done without knowledge of the study conducted by NASA.

One technical solution for the "Day in the life of a CubeSat" test is presented in
this thesis. This includes the integrated satellite, a solar simulator and the ground
station. Certain basic scenarios for satellite operations were devised and tested.
The mechanical stress tests for CubeSats are performed with automated machinery,
likewise a method to automate the "Day in the life of a CubeSat" is presented in
this thesis. This test automation includes the Robot Framework and the function
libraries developed during the course of the thesis. The final version of the function
library was made to be a generic testing library, which is able to automate the use of
many programs running in a terminal environment. Ground station software can also
be automated with this, given that such a program is terminal based. In addition,
as CubeSats often lack resources and time for testing, the solution to automate the
testing could help in this aspect as well. A setup for the "Day in the life of a CubeSat"
test is presented in Figure 37.

4.3.2 Improved requirements and operational specifications

Testing to validate the requirements of the Suomi 100 mission was informal to
some degree, as the requirements were not specified in more detail. Especially
the testing of the functionalities of the satellite platform was done in an informal
manner. No requirements on that level were defined for the satellite by the Suomi
100 satellite team. In addition, in the interest of the "Day in the life" testing, no
formal documentation about satellite on-orbit operational scenarios was devised.

Therefore, the need for a more detailed requirements and operational documenta-
tion was found out as a results of the testing of Suomi 100. Yet, the rigour used by
the traditional space missions could be avoided. In the vein of the ideology behind
CubeSats, an easier and more writable approach towards documentation could be
considered.
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Figure 37: Presentative diagram for the "Day in the life of a CubeSat" test with
automated control of ground station and solar simulator.

Defining different operation modes and assembling different operational scenarios
from them could be beneficial for the "Day in the life" testing as well as for the
entire satellite project. The modes and different possible scenarios could be outlined
at the beginning of a satellite project and these could steer the realization of the
satellite mission. In truth, acting as the functional requirements of the mission.
Outlining of the CONOPS documents at an early phase of a spacecraft project in
fact is the practise used at NASA [47], and the defined operations in CONOPS are
finally validated in the "Day in the life" tests.

Each operation mode could be further described with more detail: What should
the mode do? What shouldn’t it do? Which commands are to be used? What happens
on failure? Area of operation? Perhaps presenting each operation mode with a State
diagram, or with some other modeling method, could be useful. In fact, according to
[36], modeling of a system is preferred if not required for mission- and safety-critical
applications.

In conclusion, a design for the "Day in the life of a CubeSat" test could consist of
the following steps:

1. Design different on-orbit operational scenarios based on the mission definition.

2. Break different scenarios into different operation modes of the satellite. Modes,
for example, such as downlink data, use payload instrument, stay idle and so
forth. Create state diagrams for the operation modes and derive functional
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requirements from the diagrams.

3. Run a scenario over a radio link and use a solar illuminator to simulate the
Sun.

4. Verify battery charging and proper communication with the satellite over the
radio link.

5. Based on the operation mode functional requirements, verify proper functional-
ity of different operation modes in a scenario.

6. Perform steps 3-5 for all operational scenarios.

On the next page an example state diagram of Imaging mode operation mode is
presented in Figure 38. The operation mode is defined in Section 2.4.2. The different
states are presented as circles and the status of each subsystem in the satellite is
indicated within the circle. Transitions between states are indicated by arrow lines.
Idle state is the initial state of the system. When a critical failure is caused in the
satellite by e.g. software error, the satellite goes into System shutdown state and the
satellite power cycles the EPS and restarts the OBC and other subsystems. The
satellite finally returns to the Idle state after the reset.
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5 Conclusions
In this thesis automated functional system integration tests for the Suomi 100 CubeSat
were performed with the Robot Framework. The need for testing at this level was
identified from surveys conducted for all CubeSat missions flown previously, which
showed a high failure rate for missions led by university teams in contrast to low failure
rates for missions performed by organisations and companies with established practices
in integration and testing. Thus, testing methods used by e.g. NASA at satellite
integration level along with industry proven testing practices were applied in the
design of testing performed for Suomi 100. The testing was automated with the Robot
Framework, which is an industry proven open source test automation framework.
The framework can be freely obtained through Robot Framework homepage. It was
felt that doing the testing with the help of automated computer software would give
the testing more rigour and reproducability. The function libraries that were used
in automation of the testing were written with Python programming language. A
reusable version of the test automation library, CubeSatAutomation, can be obtained
from https://github.com/Juha-MattiLukkari/cubesatautomation.

The first tests conducted for the satellite were functional tests for the integrated
Suomi 100 payloads, which were an optical white light camera and an AM radio
instrument for Ionospheric measurements. The second test set included testing of the
core satellite functions such as housekeeping data collection, safe restart handling,
software updates and so forth. The final set consisted of tests for operational mission
scenarios or "Day in the life of the satellite" tests.

The thesis described the work which was done to simulate the functional environ-
ment for testing of the payloads and the operational scenario tests. For testing of the
camera payload, the satellite was taken to a balcony at Aalto University on a sunny
day. During the testing of the integrated radio payload, a HackRF software defined
radio was used to simulate the noise signals found in the ionosphere. A larger setup
was used for the "Day in the life of the satellite" tests. With this test, not just the
proper functionality of the satellite software was tested, but also that the radio link
to the satellite worked and that the solar panels were able to charge the satellite. As
such, the automated tests were performed via the radio link and a large Xenon lamp
was used to simulate the Sun.

With the performed tests, we proved the proper functionality of the camera
payload as well as the proper functionality of nearly all of the core satellite functions.
The operational scenario tests showed that we can communicate with and send
commands to the satellite via radio link, and that the solar panels were able to charge
the batteries in the Suomi 100. The only downside seemed to be the low downlink
speed, yet this was to be expected.

The tests for the radio payload, on the other hand, identified several defects and
most importantly emergent problems in the integration with the rest of the satellite
platform. The defects were resolved with consequent software updates, but certain
problems with integration could not be overcome. The biggest one being the slow
speed of reading and storing of data from the payload by the OBC. This demanded
a drastic reduction in the sample rate from the possible 32-48 kHz to just 1 kHz for

http://robotframework.org/#introduction
https://github.com/Juha-MattiLukkari/cubesatautomation
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reliable data measurement.
Performing these tests proved to us that the Robot Framework can work as a

testing framework for CubeSats, and that we could carry out automated testing of
the Suomi 100 CubeSat. The software libraries doing the actual automation were
developed into a generic testing library, which potentially could be used for testing
and automation of any local or external Linux terminal software, such as a satellite
ground station software.

A solution for improving the success rate of CubeSat missions through testing
was presented in this thesis as the "Day in the life of a CubeSat" test. Furthermore,
features that are to be tested are proposed to be defined through state diagrams. The
diagrams would represent different operation modes of the satellite and functional
requirements of the system could be derived from the state diagrams. In order to
decrease failure rates of CubeSat missions, these two tasks are proposed to be added
as part of the CubeSat concept as guidelines for system integration testing.

The "Day in the life of a CubeSat" tests the functionalities which have from
statistics been considered as causing the infant mortality of CubeSats. In the test
mentioned, the ground station is used to control the satellite over the radio link,
and the satellite is situated in a laboratory with a solar illuminator. By executing
nominal satellite operations with this setup, the proper on-orbit functionality of the
satellite can be verified. As noted, a technical solution for automating this test by
automating the control of the ground station software is presented in this thesis.
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A CubeSatAutomation function library
The source code for the release version of the CubeSatAutomation test automation
library is presented in this section. New versions of the library can be obtained
from https://github.com/Juha-MattiLukkari/cubesatautomation. The library
requires the following libraries to be installed: paramiko, psutil and pyautogui is
imported at run time by the type_ command method.

1 import socket
2 import sys
3 import os
4 import signal
5 import subprocess
6 import thread
7 import time
8 from fcntl import fcntl, F_GETFL, F_SETFL
9 from os import O_NONBLOCK, read

10 from ConfigParser import SafeConfigParser
11 import psutil
12 import robot
13 import paramiko
14

15 class CubeSatAutomation(object):
16 ''' Function library for CubeSat test automation
17 Version 1.0. Written by Juha-Matti Lukkari 2017-2018.
18 Provides low level methods to automate testing of both local terminal

based programs↪→

19 and remote systems with networking capabilities.
20 A local program would be e.g. groundstation software, a remote system

could e.g.↪→

21 be a Hardware-in-the-loop, such as a satellite subsystem in a
testbed.↪→

22

23 stdin/stdout of a local program is used for commanding and receiving
responses↪→

24 from the program.
25 Socket connection is used for commanding and receiving responses from

a remote↪→

26 program.
27 SSH is used to start and close programs for testing in a remote

system.↪→

28

29 '''
30

31 ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'
32 proc = None
33 server = None
34 port = 0

https://github.com/Juha-MattiLukkari/cubesatautomation
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35 sock = None
36 ssh = None
37 reply_buffer = ""
38

39 def __init__(self):
40 self.parser = SafeConfigParser()
41

42 def connect_socket(self, server, port, config_file=None, wait_time=2):
43 ''' Connect to a network socket
44 Server is either the hostname or the IP address of the host.
45 Server and port defined in a config file override the given

settings.↪→

46 '''
47 if config_file:
48 print "Config file"
49 self.parser.read(str(config_file))
50 server = str(self.parser.get('SOCKET', 'server'))
51 port = int(self.parser.get('SOCKET', 'port'))
52

53 CubeSatAutomation.server = str(server)
54 CubeSatAutomation.port = int(port)
55 print "Opening socket connection.."
56 CubeSatAutomation.sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)↪→

57 server_address = (CubeSatAutomation.server, CubeSatAutomation.port)
58 CubeSatAutomation.sock.connect(server_address)
59 CubeSatAutomation.sock.setblocking(0) # For non-blocking network

communication↪→

60 print "Connected to %s port %s" % server_address
61 time.sleep(int(wait_time))
62

63 def close_socket(self):
64 ''' Close the network socket
65 '''
66 if CubeSatAutomation.sock:
67 print "Closing socket connection"
68 CubeSatAutomation.sock.shutdown(socket.SHUT_RDWR)
69 CubeSatAutomation.sock.close()
70 CubeSatAutomation.sock = None
71 CubeSatAutomation.server = None
72 CubeSatAutomation.port = 0
73 else:
74 print "No socket connection initialized!"
75

76 def program_start(self, prog, params=None, config_file=None,
wait_time=5):↪→

77 ''' Start the program for automation
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78 Program and params defined in a config file override the given
settings.↪→

79 '''
80 if config_file:
81 self.parser.read(str(config_file))
82 prog = self.parser.get('PROGRAM', 'path')
83 params = self.parser.get('PROGRAM', 'params')
84

85 print "Opening program %s for automated control.." % str(prog)
86 CubeSatAutomation.proc = subprocess.Popen([str(prog) + " " +

str(params)], stdin=subprocess.PIPE,↪→

87 stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
88 flags = fcntl(CubeSatAutomation.proc.stdout, F_GETFL) # get

current process stdout flags↪→

89 fcntl(CubeSatAutomation.proc.stdout, F_SETFL, flags | O_NONBLOCK) #
For non-blocking stdout communication↪→

90 print "Started program " + str(prog) + " with parameters " +
str(params)↪→

91 time.sleep(int(wait_time))
92

93 def program_close(self):
94 ''' Close the program we were automating
95 Close any existing socket connections as well.
96 First tries to close the program in a neat way, if that fails
97 then executes the 'kill' command from terminal.
98

99 Any program that stays alive and doesn't exit after tests have
finished↪→

100 is a problem for the subsequent tests against the same program.
101 '''
102 if CubeSatAutomation.sock:
103 self.close_socket()
104 if CubeSatAutomation.proc:
105 CubeSatAutomation.proc.terminate() # Doesn't close the program

properly in some cases!↪→

106 if os.getpgid(CubeSatAutomation.proc.pid):
107 print "Clean termination of the program wasn't successful."
108 print "Attempting to terminate from OS.."
109 pid = os.getpgid(CubeSatAutomation.proc.pid)
110 kill_command = "kill -15 " + "-" + str(pid)
111 subprocess.Popen([str(kill_command)], shell=True)
112

113 CubeSatAutomation.proc = None
114

115 def remote_program_start(self, prog, server, port=22,
116 user=None, passw=None, config_file=None, wait_time=5):
117 ''' Start a program for testing at a remote location through SSH
118 Using a config file for setup is preferred.
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119 Parameters for the program are not defined separately, but
120 should be included to the prog argument.
121 '''
122 ssh = paramiko.SSHClient()
123 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
124 if config_file:
125 self.parser.read(str(config_file))
126 prog = str(self.parser.get('REMOTE', 'prog'))
127 server = str(self.parser.get('REMOTE', 'server'))
128 port = int(self.parser.get('REMOTE', 'port'))
129 user = str(self.parser.get('REMOTE', 'username'))
130 passw = str(self.parser.get('REMOTE', 'password'))
131

132 ssh.connect(hostname=str(server), port=int(port), username=user,
password=passw)↪→

133 stdin, stdout, stderr = ssh.exec_command(str(prog), get_pty=True)
134 print "Started program %s on remote server %s" % (str(prog),

str(server))↪→

135 CubeSatAutomation.ssh = ssh
136 time.sleep(int(wait_time))
137

138 def remote_program_close(self):
139 ''' Close a remotely started program through SSH
140 Simply closes the socket and as get_pty was used, the program

should↪→

141 terminate on the remote system.
142 '''
143 if CubeSatAutomation.ssh:
144 CubeSatAutomation.ssh.close()
145 CubeSatAutomation.ssh = None
146

147 def _send_socket(self, message):
148 ''' Send message through socket connection
149 '''
150 print "Sending command '%s' through socket connection" % str(message)
151 command = str(message) + "\r"
152 CubeSatAutomation.sock.sendall(command)
153

154 def _send_console(self, message):
155 ''' Send message through standard input
156 '''
157 print "Sending command '%s' through standard input" % str(message)
158 command = str(message) + '\r'
159 CubeSatAutomation.proc.stdin.write(command)
160

161 def _communicate(self, message):
162 ''' Choose the communication route for sending commands
163 '''
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164 if CubeSatAutomation.sock:
165 self._send_socket(str(message))
166 else:
167 self._send_console(str(message))
168

169 def _receive(self, timeout, read_timeout):
170 ''' Choose the communication route for receiving replies
171 '''
172 if CubeSatAutomation.sock:
173 console_lines = self._read_socket(int(timeout), int(read_timeout))
174 else:
175 console_lines = self._read_console(int(timeout), int(read_timeout))
176 return console_lines
177

178 def send_command(self, message, option="Store", timeout=2,
read_timeout=2):↪→

179 ''' Send commands to the program via the socket connection
180 Replies from the socket are read concurrently.
181 '''
182 self._send_socket(str(message))
183 console_lines = self._read_socket(int(timeout), int(read_timeout))
184 console_lines = str(console_lines).split("\\n")
185 if "Store" in str(option):
186 CubeSatAutomation.reply_buffer = console_lines
187

188 def write_command(self, message, option="Store", timeout=2,
read_timeout=2):↪→

189 ''' Send commands to the program via standard input
190 Replies from standard output are read concurrently.
191 '''
192 self._send_console(str(message))
193 console_lines = self._read_console(int(timeout), int(read_timeout))
194 console_lines = str(console_lines).split("\\n")
195 if "Store" in str(option):
196 CubeSatAutomation.reply_buffer = console_lines
197

198 def type_command(self, message, option="Store", timeout=2,
read_timeout=2):↪→

199 ''' Send commands to the program by simulating typing on a keyboard
200 Uses pyautogui library to perform the simulated typing.
201 Replies from standard output are read concurrently.
202

203 Use this keyword with caution! When using this keyword, the
computer↪→

204 shouldn't be used for anything else than performing testing.
205 '''
206 import pyautogui
207 pyautogui.typewrite(str(message))
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208 pyautogui.press('enter')
209 console_lines = self._read_console(int(timeout), int(read_timeout))
210 console_lines = str(console_lines).split("\\n")
211 if "Store" in str(option):
212 CubeSatAutomation.reply_buffer = console_lines
213

214 def _read_socket(self, timeout=5, read_timeout=5):
215 ''' Read messages through the socket
216 '''
217 print "Reading messages from socket connection"
218 socket_lines = []
219 time_count = 0
220 while time_count < int(timeout):
221 time.sleep(1) # Wait for data to be 'cooked'
222 time_count = time_count + 1
223 try:
224 line = CubeSatAutomation.sock.recv(1024)
225 except socket.error: # No data to be read, wait if more comes
226 socket_lines.append("Waiting for more data from socket..\n")
227 read_timecount = 0
228 while read_timecount < int(read_timeout):
229 try:
230 line = CubeSatAutomation.sock.recv(1024)
231 except socket.error:
232 time.sleep(1)
233 read_timecount = read_timecount + 1
234 time_count = time_count + 1
235 continue
236 else:
237 break
238 if read_timecount >= int(read_timeout):
239 socket_lines.append("Process data read timeout!\n")
240 break
241 print "sock:" + line.rstrip()
242 if line != '':
243 socket_lines.append(line)
244 return socket_lines
245

246 def _read_console(self, timeout, read_timeout=10):
247 ''' Read messages through standard output
248 '''
249 console_lines = []
250 time_count = 0
251 while time_count < int(timeout):
252 time.sleep(1) # Wait for data to be 'cooked'
253 time_count = time_count + 1
254 try:
255 line = read(CubeSatAutomation.proc.stdout.fileno(), 1024)
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256 except OSError: # No data to be read, wait if more comes
257 console_lines.append("Waiting for more data from process..\n")
258 read_timecount = 0
259 while read_timecount < int(read_timeout):
260 try:
261 line = read(CubeSatAutomation.proc.stdout.fileno(), 1024)
262 except OSError:
263 time.sleep(1)
264 read_timecount = read_timecount + 1
265 time_count = time_count + 1
266 continue
267 else:
268 break
269 if read_timecount >= int(read_timeout):
270 console_lines.append("Process data read timeout!\n")
271 break
272 print "term:" + line.rstrip()
273 if line != '':
274 console_lines.append(line)
275 return console_lines
276

277 def clear_messages(self, option="Stored", read_timeout=5):
278 ''' Empty messages that have come through socket connection
279 '''
280 if "Stored" in str(option):
281 CubeSatAutomation.reply_buffer = ""
282 try:
283 CubeSatAutomation.sock.recv(1024)
284 except socket.error: # No data to be read, wait if more comes
285 read_timecount = 0
286 while read_timecount < int(read_timeout):
287 try:
288 CubeSatAutomation.sock.recv(1024)
289 except socket.error:
290 time.sleep(1)
291 read_timecount = read_timecount + 1
292 continue
293 else:
294 break
295

296 def clear_replies(self, option="Stored", read_timeout=5):
297 ''' Clear process replies
298 Flush the stdout and read & discard messages during read_timeout.
299 Additionally, empty the reply_buffer
300 '''
301 CubeSatAutomation.proc.stdout.flush()
302 if "Stored" in str(option):
303 CubeSatAutomation.reply_buffer = ""
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304 try:
305 read(CubeSatAutomation.proc.stdout.fileno(), 1024)
306 except OSError: # No data to be read, wait if more comes
307 read_timecount = 0
308 while read_timecount < int(read_timeout):
309 try:
310 read(CubeSatAutomation.proc.stdout.fileno(), 1024)
311 except OSError:
312 time.sleep(1)
313 read_timecount = read_timecount + 1
314 continue
315 else:
316 break
317

318 def clear_stored_messages(self):
319 ''' Empty the reply_buffer of messages received from the program
320 '''
321 CubeSatAutomation.reply_buffer = ""
322

323 def verify_reply_contains(self, message, timeout=5, read_timeout=10):
324 ''' Read messages from the standard output/socket
325 Verify that the specified message is received.
326 '''
327 console_lines = self._receive(int(timeout), int(read_timeout))
328 console_lines = str(console_lines).split("\\n")
329 found = False
330 for line in console_lines:
331 if str(message) in line:
332 found = True
333 break
334 if not found:
335 print console_lines
336 raise ValueError ("Message %s was not found in the process

replies!\n" % str(message))↪→

337

338 def verify_reply_contains_not(self, message, timeout=5,
read_timeout=10):↪→

339 ''' Read messages from the standard output/socket
340 Verify that the specified message isn't received.
341 '''
342 console_lines = self._receive(int(timeout), int(read_timeout))
343 console_lines = str(console_lines).split("\\n")
344 found = False
345 for line in console_lines:
346 if str(message) in line:
347 found = True
348 break
349 if found:
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350 print console_lines
351 raise ValueError ("Message %s was not supposed to be found in the

process replies!\n" % str(message))↪→

352

353 def verify_reply_contained(self, message):
354 ''' Verify if a specified message is contained in the reply_buffer

class variable↪→

355 '''
356 console_lines = str(CubeSatAutomation.reply_buffer).split("\\n")
357 found = False
358 for line in console_lines:
359 if str(message) in line:
360 found = True
361 break
362 if not found:
363 print console_lines
364 raise ValueError ("Message %s was not found in the recent process

replies!\n" % str(message))↪→

365

366 def verify_reply_contained_not(self, message):
367 ''' Verify that a specified message is not contained in the

reply_buffer class variable↪→

368 '''
369 console_lines = str(CubeSatAutomation.reply_buffer).split("\\n")
370 found = False
371 for line in console_lines:
372 if str(message) in line:
373 found = True
374 break
375 if found:
376 print console_lines
377 raise ValueError ("Message %s was not supposed to be found in the

recent process replies!\n" % str(message))↪→

378

379 def wait_until_reply_contains(self, message, timeout=20,
read_timeout=5):↪→

380 ''' Wait until a specified reply is received
381 '''
382 completed = False
383 found = False
384 time_count = 0
385 for line in CubeSatAutomation.reply_buffer:
386 if str(message) in str(line):
387 completed = True
388 found = True
389 while not completed:
390 console_lines = self._receive(1, int(read_timeout))
391 console_lines = str(console_lines).split("\\n")
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392 time_count = time_count + 1
393 time.sleep(1)
394 if time_count > int(timeout):
395 completed = True
396 for line in console_lines:
397 if str(message) in line:
398 found = True
399 completed = True
400 break
401 if not found:
402 print console_lines
403 raise ValueError ("Message %s was not found in the process

replies!\n" % str(message))↪→

404

405 def persistent_command(self, message, exception_replies,
406 end_reply="None", timeout=5, read_timeout=2):
407 ''' Sends a command persistently until either time runs out or a

certain reply is received↪→

408 The exception replies are such replies which are considered to be
failures in the↪→

409 commanding of the system. When such a reply is encountered, the
command is re-sent.↪→

410 An end reply indicates a reply which tells us to stop resending the
command.↪→

411 '''
412 time_count = 0
413 completed = False
414 found = False
415 error_found = False
416 command = str(message) + '\r'
417 self._communicate(str(message))
418 exception_replies = str(exception_replies)
419 exception_replies = exception_replies.split(';')
420 while not completed:
421 if time_count >= int(timeout):
422 completed = True
423 break
424 console_lines = self._receive(int(timeout), int(read_timeout))
425 console_lines = str(console_lines).split("\\n")
426 CubeSatAutomation.reply_buffer = console_lines
427 for line in console_lines:
428 for exception_reply in exception_replies:
429 if str(exception_reply) in str(line):
430 print "Exception %s found, retrying to send command" %

str(exception_reply)↪→

431 self._communicate(str(message))
432 break
433 if str(end_reply) in str(line):
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434 completed = True
435 found = True
436 break
437 if "None" in str(end_reply):
438 completed = True
439 found = True
440 break
441 time_count = time_count + 1
442 time.sleep(1)
443 if len(end_reply) > 0:
444 if found:
445 print "Desired reply %s was found in process replies" %

str(end_reply)↪→

446 else:
447 if str(end_reply) == "Timeout":
448 pass
449 else:
450 raise ValueError ("Desired reply %s was not found in process

replies" % str(end_reply))↪→

451 if "None" in str(end_reply) in str(end_reply):
452 console_lines = self._receive(1, int(read_timeout))
453 console_lines = str(console_lines).split("\\n")
454 CubeSatAutomation.reply_buffer = console_lines
455 for line in console_lines:
456 if str(exception_reply) in str(line):
457 raise ValueError ("Exception %s still found after timeout" %

str(exception_reply))↪→

A configuration file which can be used with certain keywords in the CubeSatAu-
tomation library is presented below. Note: The format of the configuration files
should follow the one presented here.

1 [PROGRAM]
2 path: /home/juha/S100/EGSE/EGSE/csp-client-v1.1/build/csp-client
3 params: -a 8 -d /dev/ttyUSB0 -b 500000
4 [SOCKET]
5 server: s100-juha
6 port: 5000
7 [REMOTE]
8 prog: /home/pi/SUT/Socket/satprog
9 server: 169.254.57.130

10 port: 22
11 username: pi
12 password: raspberry
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B API for CSP client
The C language code for socket connection API appended to the GomSpace CSP
client is presented below.

1 #ifdef linux
2 #include <fcntl.h>
3 #include <sys/types.h>
4 #include <sys/socket.h>
5 #include <sys/stat.h>
6 #include <netinet/in.h>
7 #endif
8

9 void *api_server(void)
10 {
11 // Here listen for connections
12 // and use command_run to execute the commands
13 int sockfd, newsockfd;
14 char buffer[256];
15 struct sockaddr_in serv_addr;
16 sockfd = socket(AF_INET, SOCK_STREAM, 0);
17 if (sockfd < 0)
18 printf("ERROR opening socket\n");
19 else
20 printf("Socket started\n");
21 bzero((char *) &serv_addr, sizeof(serv_addr));
22 int portno = atoi("5000");
23 serv_addr.sin_family = AF_INET;
24 serv_addr.sin_addr.s_addr = INADDR_ANY;
25 serv_addr.sin_port = htons(portno);
26 if (bind(sockfd, (struct sockaddr *) &serv_addr,
27 sizeof(serv_addr)) < 0)
28 printf("ERROR on binding\n");
29 listen(sockfd, 5);
30 newsockfd = accept(sockfd,
31 (struct sockaddr *) NULL,
32 NULL);
33 if (newsockfd < 0)
34 printf("ERROR on accept\n");
35 while(1)
36 {
37 bzero(buffer, 256);
38 int n = read(newsockfd, buffer, 255); //Read messages coming

through socket↪→

39 if(n>0)
40 {
41 printf("SOCKET: Received %d bytes:%s\n", n, buffer);
42 command_run(buffer);
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43 write(newsockfd, reply_buffer, strlen(reply_buffer));
44 //dup2(old, newsockfd);
45 }
46 }
47 close(newsockfd);
48 printf("Closed socket");
49 close(sockfd);
50 }
51

52 int main(int argc, char * argv[]) {
53

54 /* API */
55 static pthread_t handle_api;
56 pthread_create(&handle_api, NULL, api_server, NULL);
57

58 /* Wait here for console to end */
59 pthread_join(handle_api, NULL);
60 return 0;
61 }
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C Robot Framework test suites
Some of the Robot Framework test suites that were executed in the testing of Suomi
100 CubeSat are presented here. In total more than 20 test suites were executed.
Given that some test suites are identical in structure to others, only the most essential
test suites are listed here.

First the Robot Framework script file common to all test suites is presented. This
file contains some additional keywords such as the Satellite State keyword.

1 #--------------s100_keywords.robot-------------
2

3 *** Keywords ***
4 Start Suite
5 Client Start
6 Sleep 5
7 Connect Socket
8

9 End Suite
10 Send Message exit_client
11 Close Connection
12 Client Close
13

14 Satellite State
15 [Arguments] ${state}
16 ${state}= Convert To Lowercase ${state}
17 Run Keyword If '${state}' == 'idle'
18 ... Idle
19 Run Keyword If '${state}' == 'reboot'
20 ... Reboot
21

22 Idle
23 Send Message fp delete telem
24 Send Message fp delete beacon
25 Send Message radio opmode_thread_terminate
26 Verify Startup Satellite
27

28 Reboot
29 Send Message fp delete telem
30 Send Message fp delete beacon
31 Send Message radio opmode_thread_terminate
32 Send Message reboot 2
33 Sleep 30
34 Verify Startup Satellite

Next are certain test cases for the functional test of the camera presented.

1 #--------------camera_tests.robot-------------
2

3 *** Settings ***
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4 Library String
5 Library ../CubeSatAutomation.py
6 Library ../NanoCam.py
7 Resource ../s100_keywords.robot
8 Suite Setup Start Suite
9 Suite Teardown Client Close

10

11 *** Test Cases ***
12

13 Imaging mode - Default parameters
14 [Documentation] The onboard camera is used to take images of the

earth.↪→

15 [Tags] OPMODE-IMAGING
16 Satellite State Reboot
17 Camera Startup 15
18 Verify Startup Camera
19 Verify Device Detected Camera 5
20 Set Satellite Parameter Camera exposure-us 10000
21 Set Satellite Parameter Camera gain-target 30
22 Set Satellite Parameter Camera gain-global 2048
23 Set Satellite Parameter Camera jpeg-qual 85
24 Set Satellite Parameter Camera color-correct true
25 Set Satellite Parameter Camera gamma-correct true
26 Set Satellite Parameter Camera white-balance false
27 Send Satellite Parameters
28 Camera Take Picture 5000 2 def.jpg -a
29 Camera Load Picture /mnt/data/images/def.jpg def.jpg
30 Log <img src="def.jpg" width="500" height="500"> html=yes
31

32 Imaging mode - Exposure 10000 Gain-Target 60
33 [Documentation] The onboard camera is used to take images of the

earth.↪→

34 [Tags] OPMODE-IMAGING
35 Satellite State Idle
36 Camera Startup 15
37 Verify Startup Camera
38 Verify Device Detected Camera 5
39 Set Satellite Parameter Camera exposure-us 10000
40 Set Satellite Parameter Camera gain-target 60
41 Set Satellite Parameter Camera gain-global 2048
42 Set Satellite Parameter Camera jpeg-qual 85
43 Set Satellite Parameter Camera color-correct true
44 Set Satellite Parameter Camera gamma-correct true
45 Set Satellite Parameter Camera white-balance false
46 Send Satellite Parameters
47 Camera Take Picture 5000 2 def.jpg -a
48 Camera Load Picture /mnt/data/images/def.jpg def1.jpg
49 Log <img src="def1.jpg" width="500" height="500"> html=yes
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50

51 Imaging mode - Exposure 10000 Gain-Target 90
52 [Documentation] The onboard camera is used to take images of the

earth.↪→

53 [Tags] OPMODE-IMAGING
54 Satellite State Idle
55 Camera Startup 15
56 Verify Startup Camera
57 Verify Device Detected Camera 5
58 Set Satellite Parameter Camera exposure-us 10000
59 Set Satellite Parameter Camera gain-target 90
60 Set Satellite Parameter Camera gain-global 2048
61 Set Satellite Parameter Camera jpeg-qual 85
62 Set Satellite Parameter Camera color-correct true
63 Set Satellite Parameter Camera gamma-correct true
64 Set Satellite Parameter Camera white-balance false
65 Send Satellite Parameters
66 Camera Take Picture 5000 2 def.jpg -a
67 Camera Load Picture /mnt/data/images/def.jpg def2.jpg
68 Log <img src="def2.jpg" width="500" height="500"> html=yes
69

70 Imaging mode - Exposure 10000, Jpeg quality 20
71 [Documentation] The onboard camera is used to take images of the

earth.↪→

72 [Tags] OPMODE-IMAGING
73 Satellite State Idle
74 Camera Startup 15
75 Verify Startup Camera
76 Verify Device Detected Camera 5
77 Set Satellite Parameter Camera exposure-us 10000
78 Set Satellite Parameter Camera gain-target 20
79 Set Satellite Parameter Camera gain-global 2048
80 Set Satellite Parameter Camera jpeg-qual 20
81 Set Satellite Parameter Camera color-correct true
82 Set Satellite Parameter Camera gamma-correct true
83 Set Satellite Parameter Camera white-balance false
84 Send Satellite Parameters
85 Camera Take Picture 5000 2 def.jpg
86 Camera Load Picture /mnt/data/images/def.jpg def5.jpg
87 Log <img src="def5.jpg" width="500" height="500"> html=yes
88

89 Imaging mode - Exposure 10000, Gamma correct false
90 [Documentation] The onboard camera is used to take images of the

earth.↪→

91 [Tags] OPMODE-IMAGING
92 Satellite State Idle
93 Camera Startup 15
94 Verify Startup Camera
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95 Verify Device Detected Camera 5
96 Set Satellite Parameter Camera exposure-us 10000
97 Set Satellite Parameter Camera gain-target 20
98 Set Satellite Parameter Camera gain-global 2048
99 Set Satellite Parameter Camera jpeg-qual 100

100 Set Satellite Parameter Camera color-correct true
101 Set Satellite Parameter Camera gamma-correct false
102 Set Satellite Parameter Camera white-balance false
103 Send Satellite Parameters
104 Camera Take Picture 5000 2 def.jpg
105 Camera Load Picture /mnt/data/images/def.jpg def10.jpg
106 Log <img src="def10.jpg" width="500" height="500"> html=yes
107

108 Imaging mode - Exposure 30000, Default parameters
109 [Documentation] The onboard camera is used to take images of the

earth.↪→

110 [Tags] OPMODE-IMAGING
111 Satellite State Idle
112 Camera Startup 15
113 Verify Startup Camera
114 Verify Device Detected Camera 5
115 Set Satellite Parameter Camera exposure-us 30000
116 Set Satellite Parameter Camera gain-target 30
117 Set Satellite Parameter Camera gain-global 2048
118 Set Satellite Parameter Camera jpeg-qual 85
119 Set Satellite Parameter Camera color-correct true
120 Set Satellite Parameter Camera gamma-correct true
121 Set Satellite Parameter Camera white-balance false
122 Send Satellite Parameters
123 Camera Take Picture 5000 2 def.jpg -a
124 Camera Load Picture /mnt/data/images/def.jpg def13.jpg
125 Log <img src="def13.jpg" width="500" height="500"> html=yes
126

127 Imaging mode - Exposure 30000 Gain-Target 60
128 [Documentation] The onboard camera is used to take images of the

earth.↪→

129 [Tags] OPMODE-IMAGING
130 Satellite State Idle
131 Camera Startup 15
132 Verify Startup Camera
133 Verify Device Detected Camera 5
134 Set Satellite Parameter Camera exposure-us 30000
135 Set Satellite Parameter Camera gain-target 60
136 Set Satellite Parameter Camera gain-global 2048
137 Set Satellite Parameter Camera jpeg-qual 85
138 Set Satellite Parameter Camera color-correct true
139 Set Satellite Parameter Camera gamma-correct true
140 Set Satellite Parameter Camera white-balance false
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141 Send Satellite Parameters
142 Camera Take Picture 5000 2 def.jpg -a
143 Camera Load Picture /mnt/data/images/def.jpg def14.jpg
144 Log <img src="def14.jpg" width="500" height="500"> html=yes
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The following listing presents certain test cases from different test suites written
for testing of the radio payload.

1 #--------------payload_tests_rawmode_5.robot-------------
2

3 *** Settings ***
4 Library String
5 Library ../libraries/CubeSatAutomation.py
6 Library ../libraries/RadioPayload.py
7 Resource ../resources/s100_keywords.robot
8 Suite Setup Start Suite
9 Suite Teardown Client Close

10

11 *** Test Cases ***
12

13 Raw Mode - 5 Mhz Default parameters
14 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→

15 [Tags] OPMODE-RAW
16 Satellite State Reboot
17 Radio Startup 3 0 1
18 Verify Startup Radio
19 Verify Device Detected Radio 5
20 Verify Radio Status
21 Store Client Responses Raw Mode 200 15
22 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 1

0;5000;100;100000;↪→

23 Sleep 2
24 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
25 Send Beacon 10 4 1
26 Sleep 10
27 Verify Radio Results Raw Mode 200
28 Radio Power Down
29 Radio Load Data /flash/data/m1_debug.dat m1_debug1.dat
30 Radio Plot Data m1_debug1.dat m1_debug1.txt m1_debug1.png
31 Log <img src="m1_debug1.png" width="640" height="480"> html=yes
32

33 Raw Mode - 5 Mhz 1000000 times
34 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→

35 [Tags] OPMODE-RAW
36 Satellite State Reboot
37 Radio Startup 3 0 1
38 Verify Startup Radio
39 Verify Device Detected Radio 5
40 Verify Radio Status
41 Store Client Responses Raw Mode 820 25
42 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 1

0;5000;100;1000000;↪→
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43 Sleep 2
44 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
45 Send Beacon 10 4 1
46 Sleep 10
47 Verify Radio Results Raw Mode 820
48 Radio Power Down
49 Sleep 30
50 Radio Load Data /flash/data/m1_debug.dat m1_debug7.dat 260
51 Radio Plot Data m1_debug7.dat m1_debug7.txt m1_debug7.png
52 Log <img src="m1_debug7.png" width="640" height="480"> html=yes
53

54 #--------------payload_tests_lowobsmode_5.robot-------------
55

56 *** Settings ***
57 Library String
58 Library ../libraries/CubeSatAutomation.py
59 Library ../libraries/RadioPayload.py
60 Resource ../resources/s100_keywords.robot
61 Suite Setup Start Suite
62 Suite Teardown Client Close
63

64 *** Test Cases ***
65

66 Lowobs Mode - 5 Mhz Default parameters, output_type 3
67 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→

68 [Tags] OPMODE-LOWOBS
69 Satellite State Idle
70 Radio Startup 3 0 1
71 Verify Startup Radio
72 Verify Device Detected Radio 5
73 Verify Radio Status
74 Store Client Responses Lowobs Mode 80 15
75 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 2

0;5000;100;100;100;3;0;↪→

76 Sleep 2
77 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
78 Send Beacon 10 4 1
79 Sleep 10
80 Verify Radio Results Lowobs Mode 80
81 Radio Power Down
82 Radio Load Data /flash/data/m2_debug.dat m2_debug5.dat
83 Radio Plot Data m2_debug5.dat m2_debug5.txt m2_debug5.png
84 Log <img src="m2_debug5.png" width="640" height="480"> html=yes
85

86 Lowobs Mode - 5 Mhz 100 times, 10 points in average
87 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→
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88 [Tags] OPMODE-LOWOBS
89 Satellite State Idle
90 Radio Startup 3 0 1
91 Verify Startup Radio
92 Verify Device Detected Radio 5
93 Verify Radio Status
94 Store Client Responses Lowobs Mode 80 15
95 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 2

0;5000;100;10;100;3;0;↪→

96 Sleep 2
97 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
98 Send Beacon 10 4 1
99 Sleep 10

100 Verify Radio Results Lowobs Mode 80
101 Radio Power Down
102 Radio Load Data /flash/data/m2_debug.dat m2_debug8.dat
103 Radio Plot Data m2_debug8.dat m2_debug8.txt m2_debug8.png
104 Log <img src="m2_debug8.png" width="640" height="480"> html=yes
105

106 #--------------payload_tests_targetmode.robot-------------
107

108 *** Settings ***
109 Library String
110 Library ../libraries/CubeSatAutomation.py
111 Library ../libraries/RadioPayload.py
112 Resource ../resources/s100_keywords.robot
113 Suite Setup Start Suite
114 Suite Teardown Client Close
115

116 *** Test Cases ***
117

118 Target Mode - Other antenna
119 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→

120 [Tags] OPMODE-TARGET
121 Satellite State Idle
122 Radio Startup 3 0 0
123 Verify Startup Radio
124 Verify Device Detected Radio 5
125 Verify Radio Status
126 Store Client Responses Target Mode 1420 15
127 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 3

0;1000;10000;10;10;1000;100;0;0;↪→

128 Sleep 2
129 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
130 Send Beacon 10 4 1
131 Sleep 10
132 Verify Radio Results Target Mode 1420
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133 Sleep 20
134 Radio Power Down
135 Radio Load Data /flash/data/m3_debug.dat m3_debug4.dat
136 Radio Plot Data m3_debug4.dat m3_debug4.txt m3_debug4.png
137 Log <img src="m3_debug4.png" width="640" height="480"> html=yes
138

139 Target Mode - N_ave 1000
140 [Documentation] The payload radio performs several sweeps over the

entire frequency range.↪→

141 [Tags] OPMODE-TARGET
142 Satellite State Idle
143 Radio Startup 3 0 1
144 Verify Startup Radio
145 Verify Device Detected Radio 5
146 Verify Radio Status
147 Store Client Responses Target Mode 1920 15
148 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 3

0;1000;10000;10;10;1000;1000;3;0;↪→

149 Sleep 2
150 Get HK 30 2 1 1 5 2 /flash/hk_test_lom
151 Send Beacon 10 4 1
152 Sleep 10
153 Verify Radio Results Target Mode 1920
154 Sleep 20
155 Radio Power Down
156 Radio Load Data /flash/data/m3_debug.dat m3_debug6.dat 260
157 Radio Plot Data m3_debug6.dat m3_debug6.txt m3_debug6.png
158 Log <img src="m3_debug6.png" width="640" height="480"> html=yes
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Certain test cases for NanoEye core features are presented next.

1 #--------------flight_planner_tests.robot-------------
2

3 *** Settings ***
4 Library String
5 Library ../libraries/CubeSatAutomation.py
6 Library ../libraries/RadioPayload.py
7 Library ../libraries/NanoCam.py
8 Resource ../resources/s100_keywords.robot
9 Suite Setup Start Suite

10 Suite Teardown Client Close
11

12 *** Test Cases ***
13

14 Simple Flight Planner
15 [Documentation] Create flight planner command
16 [Tags] OPMODE-COM
17 Satellite State Reboot
18 Create Flight Plan Ping1 ping 1 10
19 Verify Reply Message Reply in 10 10
20

21 Invalid Flight Planner
22 [Documentation] Create invalid flight planner command
23 [Tags] OPMODE-COM
24 Satellite State Idle
25 Run Keyword And Ignore Error Send Command fp delete Ping1
26 Create Flight Plan Ping1 ping 1 abc def
27 Verify Reply Contained error
28

29 Delete Flight Planner
30 [Documentation] Delete flight planner command
31 [Tags] OPMODE-COM
32 Satellite State Idle
33 Run Keyword And Ignore Error Send Command fp delete Ping1
34 Create Flight Plan Ping1 ping 1 10
35 Send Command fp delete Ping1
36 Send Command fp list
37 Verify Reply Contained Not Ping1
38

39 Create Larger Flight Planner
40 [Documentation] Create flight planner with beacon and a payload

command↪→

41 [Tags] OPMODE-COM
42 Satellite State Idle
43 Run Keyword And Ignore Error Send Command fp delete Ping1
44 Run Keyword And Ignore Error Send Command hk server 1
45 Send Command hk server 1 21
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46 Create Flight Plan Beacon hk get 0 1 1 0 5 5
47 Create Flight Plan Picture cam snap -a 30
48 Sleep 30
49 Verify Reply Message All
50

51 #--------------hk_tests.robot-------------
52

53 *** Settings ***
54 Library String
55 Library ../libraries/CubeSatAutomation.py
56 Library ../libraries/RadioPayload.py
57 Library ../libraries/NanoCam.py
58 Resource ../resources/s100_keywords.robot
59 Suite Setup Start Suite
60 Suite Teardown Client Close
61

62 *** Test Cases ***
63

64 Download and verify housekeeping
65 [Documentation] Call EPS housekeeping routine
66 [Tags] OPMODE-POWER
67 Satellite State Reboot
68 Send Command cmp route_set 1 1000 8 1 KISS
69 Send Command ftp server 1
70 Run Keyword And Ignore Error Send Command ftp rm /flash/hk_robot.dat
71 Send Command rparam download 1 19
72 Set Satellite Parameter Nanomind col_en 1
73 Set Satellite Parameter Nanomind store_en 1
74 Send Satellite Parameters
75 Send Command hk get 0 1 1 0 /flash/hk_robot.dat
76 Sleep 5
77 Send Command ftp server 1
78 Send Command ftp download_file /flash/hk_robot.dat hk_robot.dat
79 Sleep 5
80 Verify Reply Contained 1/1
81

82 Get NanoComm HK
83 [Documentation] Call AX100 housekeeping routine
84 [Tags] OPMODE-POWER
85 Satellite State Unknown
86 Send Command cmp route_set 5 1000 8 1 CAN
87 Send Command ax100 hk
88 Verify Reply Contained last_contact
89 Verify Reply Contained tot_tx_count
90 Verify Reply Contained tot_rx_count
91 Verify Reply Contained temp_brd
92

93 Get Telemetries
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94 [Documentation] Get Telemetries for subsystems
95 [Tags] OPMODE-POWER
96 Satellite State Reboot
97 Send Command rparam download 1 18
98 Set Satellite Parameter Nanomind col_obc 10
99 Set Satellite Parameter Nanomind col_eps 10

100 Set Satellite Parameter Nanomind col_com 10
101 Set Satellite Parameter Nanomind col_cam 10
102 Set Satellite Parameter Nanomind bcn_interval 10 10 10
103 Send Satellite Parameters
104 Send Command rparam download 1 19
105 Set Satellite Parameter Nanomind col_en 1
106 Set Satellite Parameter Nanomind store_en 1
107 Send Satellite Parameters
108 Sleep 30
109 Send Command ftp server 1
110 Send Command ftp download_file /flash/hk/tbl-021.bin tbl-021.bin
111 Wait Until Reply Contains 100.0%
112 Send Command ftp download_file /flash/hk/tbl-022.bin tbl-022.bin
113 Wait Until Reply Contains 100.0%
114 Send Command ftp download_file /flash/hk/tbl-025.bin tbl-025.bin
115 Wait Until Reply Contains 100.0%
116 Send Command ftp download_file /flash/hk/tbl-026.bin tbl-026.bin
117 Wait Until Reply Contains 100.0%
118 Parse HK tbl-021.bin
119 Parse HK tbl-022.bin
120 Parse HK tbl-025.bin
121 Parse HK tbl-026.bin
122

123 #--------------reboot_tests.robot-------------
124

125 *** Settings ***
126 Library String
127 Library ../libraries/CubeSatAutomation.py
128 Library ../libraries/RadioPayload.py
129 Library ../libraries/NanoCam.py
130 Resource ../resources/s100_keywords.robot
131 Suite Setup Start Suite
132 Suite Teardown Client Close
133

134 *** Test Cases ***
135

136 EPS reboot
137 [Documentation] Reboot satellite by rebooting EPS
138 [Tags] OPMODE-POWER
139 Satellite State Unknown
140 Send Command reboot 2
141 Verify Reply Contained Welcome to nanomind
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142 Wait Until Reply Contains Mount ok
143

144 OBC reboot
145 [Documentation] Reboot nanomind OBC
146 [Tags] OPMODE-POWER
147 Satellite State Unknown
148 Send Command reboot 1
149 Verify Reply Contained Welcome to nanomind
150

151 Shutdown systems and verify their absence
152 [Documentation] Shutdown subsystems
153 [Tags] OPMODE-POWER
154 Satellite State Reboot
155 Send Command cmp route_set 6 1000 8 1 CAN
156 Verify Device Detected Camera 10
157 Send Command shutdown 6
158 Run Keyword And Ignore Error Send Command ping 6
159 Verify Reply Contained Timeout after
160 Send Command cmp route_set 5 1000 8 1 CAN
161 Verify Device Detected Comm 10
162 Send Command shutdown 5
163 Run Keyword And Ignore Error Send Command ping 5
164 Verify Reply Contained Timeout after
165 Send Command reboot 2
166 Wait Until Reply Contains Mount ok
167

168 Reboot occuring during radio payload operation
169 [Documentation] Reboot EPS during payload measurement
170 [Tags] OPMODE-LOWOBS
171 Satellite State Unknown
172 Radio Startup 3 0 1
173 Verify Startup Radio
174 Verify Device Detected Radio 5
175 Verify Radio Status
176 Run Radio Mode /flash/radio_params.cfg /flash/radio_props.cfg 2

0;5000;100;100;100;0;0;↪→

177 Send Command reboot 2
178 Verify Reply Contained Welcome to nanomind
179 Wait Until Reply Contains Mount ok
180 Verify Device Detected Radio 5
181

182 Reboot occuring during file download
183 [Documentation] Reboot satellite during file transfer
184 [Tags] OPMODE-COM
185 Satellite State Reboot
186 Send Command cmp route_set 1 1000 8 1 KISS
187 Send Command fp server 1 18
188 Create Flight Plan Reboot reboot 2 30
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189 Send Command ftp server 1
190 Send Command ftp download_file /flash/nanomind.bin

nanomind_down.bin↪→

191 Wait Until Reply Contains Welcome to nanomind
192 Wait Until Reply Contains Mount ok
193 Wait Until Reply Contains Timeout
194

195 #--------------softupdate_tests.robot-------------
196

197 *** Settings ***
198 Library String
199 Library ../libraries/CubeSatAutomation.py
200 Library ../libraries/RadioPayload.py
201 Library ../libraries/NanoCam.py
202 Resource ../resources/s100_keywords.robot
203 Suite Setup Start Suite
204 Suite Teardown Client Close
205

206 *** Test Cases ***
207

208 Upload new software and reboot using it
209 [Documentation] Upload new software to Nanomind
210 [Tags] OPMODE-SOFTUPDATE
211 Satellite State Reboot
212 Send Command cmp route_set 1 1000 8 1 KISS
213 Send Command ftp server 1
214 Run Keyword And Ignore Error Send Command ftp rm /flash/nanomind2.bin
215 Sleep 5
216 Send Command ftp upload_file nanomind2.bin /flash/nanomind2.bin
217 Wait Until Reply Contains 100.0% 45
218 Send Command rparam download 1 0
219 Set Satellite Parameter Nanomind swload_image

\"/flash/nanomind2.bin"\↪→

220 Set Satellite Parameter Nanomind swload_count 10
221 Send Satellite Parameters
222 Send Command reboot 1
223 Wait Until Reply Contains Ram image 45 20
224 Sleep 80
225 Send Command radio on 0 1
226 Verify Reply Contained radio reply size 1
227

228 Upload invalid software image and see that nanomind returns to the default
software↪→

229 [Documentation] Upload invalid file for software update
230 [Tags] OPMODE-SOFTUPDATE
231 Satellite State Reboot
232 Send Command cmp route_set 1 1000 8 1 KISS
233 Send Command ftp server 1
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234 Run Keyword And Ignore Error Send Command ftp rm /flash/m1_debug.bin
235 Sleep 5
236 Send Command ftp upload_file m1_debug1.dat /flash/m1_debug.bin
237 Wait Until Reply Contains 100.0% 45
238 Send Command rparam download 1 0
239 Set Satellite Parameter Nanomind swload_image

\"/flash/m1_debug.bin"\↪→

240 Set Satellite Parameter Nanomind swload_count 3
241 Send Satellite Parameters
242 Send Command reboot 1
243 Wait Until Reply Contains Booting image in 10 seconds 45 30
244 Verify Reply Message EXCEPTION
245 Wait Until Reply Contains 1 times left 180 30
246 Wait Until Reply Contains Welcome to nanomind 45 30
247 Clear Replies All
248 Send Command ping 1
249 Verify Reply Contained Reply in
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Here is presented one test suite for the "Day in the life of a satellite".

1 #--------------dayinthelife1_mod.robot-------------
2

3 *** Settings ***
4 Library String
5 Library ../libraries/CubeSatAutomation.py
6 Library ../libraries/RadioPayload.py
7 Library ../libraries/NanoCam.py
8 Resource ../resources/s100_keywords.robot
9 Suite Setup Client Start None

/home/petri/s100/EGSE/csp-client-v1.1/build/csp-client -a 10 -z
localhost

↪→

↪→

10 Suite Teardown Client Close None
11

12

13 *** Test Cases ***
14

15 Come from eclipse - Verify charging
16 [Documentation] Day in the life operations
17 [Tags] OPMODE-POWER
18 Wait and Notify Coming from eclipse 5 /resources/notify.wav
19 Notify After Going to eclipse 600

/resources/notify2.wav↪→

20 Satellite State Unknown
21 Clear Replies All
22 Persistent Command reboot 1 error
23 Sleep 10
24 Persistent Command rdpopt 5 30000 16000 1 2000 3 error Setting
25 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat

error↪→

26 Persistent Command gssbcsp addr 6 error
27 Persistent Command gssbcsp interstage sensors error Panel
28 Verify Reply Contained Not Coarse Sunsensor: 0
29 Persistent Command gssbcsp addr 7 error
30 Persistent Command gssbcsp interstage sensors error Panel
31 Verify Reply Contained Not Coarse Sunsensor: 0
32 Persistent Command eps hk error Voltage
33 Persistent Command eps hksub vi error Vbatt
34 Verify Reply Contained Vbatt
35 Verify Reply Contained Isun
36 Verify Reply Contained Isys
37 Verify Reply Contained Not boost[1] 0mV
38 Verify Reply Contained Not boost[2] 0mV
39 Persistent Command ftp server 1 error
40 Run Keyword And Ignore error Persistent Command ftp rm

/flash/hk_robot.dat error No such file↪→

41 Persistent Command rparam download 1 19 error Wrote
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42 Persistent Command rparam set col_en 1 error Result
43 Persistent Command rparam set store_en 1 error Result
44 Persistent Command rparam send error REP
45 Persistent Command rparam download 1 18 error Wrote
46 Persistent Command rparam set bcn_interval 10 10 10 error

Result↪→

47 Persistent Command rparam send error REP
48 Verify Reply Contained Not error
49 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
50

51 Come from eclipse - Take image
52 [Documentation] Day in the life operations
53 [Tags] OPMODE-IMAGING
54 Satellite State Communicating
55 Clear Replies All
56 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
57 Persistent Command rparam download 1 19 error Wrote
58 Persistent Command rparam set col_en 0 error Result
59 Persistent Command rparam set store_en 0 error Result
60 Persistent Command rparam send error REP
61 Persistent Command rparam download 1 18 error Wrote
62 Persistent Command rparam set bcn_interval 0 0 0 error Result
63 Persistent Command rparam send error REP
64 Persistent Command adcs server 1 20 error
65 Persistent Command adcs ephem tle new error
66 Persistent Command adcs run start error
67 Persistent Command adcs set nadir error
68 Persistent Command cmp route_set 6 1000 8 1 CAN error Success
69 Persistent Command cam snap -a Snap error All
70 Persistent Command cam store test.jpg error Result
71 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
72

73 Come from eclipse - Record radio signals
74 [Documentation] Day in the life operations
75 [Tags] OPMODE-LOWOBS
76 Satellite State Communicating
77 Clear Replies All
78 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
79 Persistent Command adcs run fullstop error
80 Persistent Command rparam download 1 19 error Wrote
81 Persistent Command rparam set col_en 1 error Result
82 Persistent Command rparam set store_en 1 error Result
83 Persistent Command rparam send error REP
84 Persistent Command rparam download 1 18 error Wrote
85 Persistent Command rparam set bcn_interval 10 10 10 error Result
86 Persistent Command rparam send error REP
87 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
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88 Write Command radio operation /flash/radio_params.cfg
/flash/radio_props.cfg 2 0;0;0;0;0;0;0;↪→

89 Sleep 120
90 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
91

92 Come from eclipse - Downlink data
93 [Documentation] Day in the life operations
94 [Tags] OPMODE-COM
95 Satellite State Communicating
96 Clear Replies All
97 Persistent Command rdpopt 6 30000 16000 1 2000 3 error Setting
98 Persistent Command rparam download 1 19 error Wrote
99 Persistent Command rparam set col_en 0 error Result

100 Persistent Command rparam set store_en 0 error Result
101 Persistent Command rparam send error REP
102 Persistent Command rparam download 1 18 error Wrote
103 Persistent Command rparam set bcn_interval 0 0 0 error Result
104 Persistent Command rparam send error REP
105 Persistent Command ftp server 1 error
106 Persistent Command ftp download_file /flash/data/m2_debug.dat

m2_debug.dat error 100.0% 45 10↪→

107 Persistent Command hk get 0 10 10 0 /flash/hk_robot.dat error
108 Persistent Command ftp server 1 error
109 Persistent Command ftp download_file /flash/hk_robot.dat hk_robot.dat

error 100.0% 45 10↪→

110 Wait Until Time Event Going to eclipse 600
111 Parse HK hk_robot.dat None True hk_plot1.png

timestamps eps_hk_vbatt↪→

112 Parse HK hk_robot.dat None True hk_plot2.png
timestamps eps_hk_cursys↪→

113 Log <img src="hk_plot1.png" width="500" height="500">
html=yes↪→

114 Log <img src="hk_plot2.png" width="500" height="500">
html=yes↪→
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D Robot Framework Test Results
The log files for the majority of the executed test suites are presented in this section.
Keywords of the test cases are not shown, only the titles and Pass/Fail status of the
test cases are presented. Explanation of the failed cases is presented in Section 4. For
demonstration, below in Figure D is an example of how the test result logs appear
when the test cases and the keywords are expanded in the HTML file. Responses
from the CSP client are visible under the two keywords expanded in the example.

Start / End / Elapsed: 20171128 16:17:32.421 / 20171128 16:17:45.440 / 00:00:13.019
16:17:45.439 INFO Sending message reboot 1 

gosh:SOCKET: Received 9 bytes:reboot 1 
[0;32m3120355250.000 reset: On-chip debug system[0m 
[0;32m3120355250.052 can: can_init: bit_rate: 1000000 osc: 16000000 phs1:1 phs2:1 
pres:1 prs:2 sjw:1 sm:0[0m 
[0;32m3120355250.057 default: Route load 1/5 LOOP, 0/0 CAN 5, 8/5 KISS, 0/2 I2C[0m 
Welcome to nanomind... 
[0;32m3120355250.0[1;32mnanomind[1;30m # [0m[0m82 default: Trying to boot from 
/flash/m1_debug.bin, 3 times left[0m 
[0;32m3120355250.089 default: Waiting for fs mount[0m 
gosh:[0;33m3120355256.116 fl512s-uffs: block 39 page 0 is marked bad![0m 
READ_CONSOLE_REPLY LINES 

['SOCKET: Received 9 bytes:reboot 1\r\n\x1b3120355250.000 reset: On-chip debug 
system\x1b\r\r\n\x1b3120355250.052 can: can_init: bit_rate: 1000000 osc: 16000000 
phs1:1 phs2:1 pres:1 prs:2 sjw:1 sm:0\x1b\r\r\n\x1b3120355250.057 default: Route 
load 1/5 LOOP, 0/0 CAN 5, 8/5 KISS, 0/2 I2C\x1b\r\r\nWelcome to 
nanomind...\r\r\n\x1b3120355250.0\x1b;nanomind\x1b; # \x1b\x1b82 default: Trying to 
boot from /flash/m1_debug.bin, 3 times left\x1b\r\r\n\x1b3120355250.089 default: 
Waiting for fs mount\x1b\r\r\nWaiting for more data from 
process..\n\x1b33m3120355256.116 fl512s-uffs: block 39 page 0 is marked 
bad!\x1b\r\r\nWaiting for more data from process..\nProcess data read timeout!\n'] 
Console lines 
["['SOCKET: Received 9 bytes:reboot 1\\r", '\\x1b3120355250.000 reset: On-chip 
debug system\\x1b\\r\\r', '\\x1b3120355250.052 can: can_init: bit_rate: 1000000 
osc: 16000000 phs1:1 phs2:1 pres:1 prs:2 sjw:1 sm:0\\x1b\\r\\r', 
'\\x1b3120355250.057 default: Route load 1/5 LOOP, 0/0 CAN 5, 8/5 KISS, 0/2 
I2C\\x1b\\r\\r', 'Welcome to nanomind...\\r\\r', 
'\\x1b3120355250.0\\x1b;nanomind\\x1b; # \\x1b\\x1b82 default: Trying to boot from 
/flash/m1_debug.bin, 3 times left\\x1b\\r\\r', '\\x1b3120355250.089 default: 
Waiting for fs mount\\x1b\\r\\r', 'Waiting for more data from process..', 
'\\x1b33m3120355256.116 fl512s-uffs: block 39 page 0 is marked bad!\\x1b\\r\\r', 
'Waiting for more data from process..', 'Process data read timeout!', "']"]

Documentation: Read messages from the process stdout and verify if the desired text exists.
Start / End / Elapsed: 20171128 16:18:02.467 / 20171128 16:18:28.503 / 00:00:26.036
16:18:28.502 INFO gosh:[0;34m3120355287.505 default: Jumping to address 0xd0000000[0m 

!!! EXCEPTION 13 !!! 
Addr align exception at address 0x00000000 
   pc: ffffffff    lr: 8001f17a    sp: d010b808   r12: 00000000 
  r11: 0000000a   r10: 00000001    r9: 00000002    r8: 00000000 
   r7: 00000224    r6: d0107ed8    r5: d0000000    r4: 00000000 
   r3: 000008f2    r2: 00030d73    r1: 00006b73    r0: ff0000ff 
Flags: QVNZC 
Mode bits: HRJE3210G 
CPU Mode: NMI 

00:00:46.037KEYWORD  s100_keywords . Satellite State Reboot

00:00:08.011KEYWORD  CubeSatAutomation . Send Command cmp route_set 1 1000 8 1 KISS

00:00:08.010KEYWORD  CubeSatAutomation . Send Command ftp server 1

00:00:08.014KEYWORD  BuiltIn . Run Keyword And Ignore Error Send Command, ftp rm /flash/m1_debug.bin

00:00:05.001KEYWORD  BuiltIn . Sleep 5

00:00:10.013KEYWORD  CubeSatAutomation . Send Command ftp upload_file m1_debug1.dat /flash/m1_debug.bin

00:00:27.036KEYWORD  CubeSatAutomation . Wait Until Reply Contains 100.0%, 45

00:00:09.015KEYWORD  CubeSatAutomation . Send Command rparam download 1 0

00:00:08.013KEYWORD  CubeSatAutomation . Set Satellite Parameter Nanomind, swload_image, \"/flash/m1_debug.bin"\

00:00:08.013KEYWORD  CubeSatAutomation . Set Satellite Parameter Nanomind, swload_count, 3

00:00:08.011KEYWORD  CubeSatAutomation . Send Satellite Parameters

00:00:13.019KEYWORD  CubeSatAutomation . Send Command reboot 1

00:00:17.025KEYWORD  CubeSatAutomation . Wait Until Reply Contains Booting image in 10 seconds, 45, 30

00:00:26.036KEYWORD  CubeSatAutomation . Verify Reply Message EXCEPTION

Figure D: Expanded Robot Framework test log file.
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20171013 17:57:46 GMT+03:00

Critical Tests
All Tests

OPMODE-IMAGING

Camera Tests

Camera Tests Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
39 30 9 02:15:28
39 30 9 02:15:28

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
39 30 9 02:15:28

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
39 30 9 02:15:33

Test Execution Log

Full Name: Camera Tests
Source: /home/juha/soft/pypractice/CSAdev/camera_tests.robot
Start / End / Elapsed: 20171013 15:42:13.522 / 20171013 17:57:46.617 / 02:15:33.095
Status: 39 critical test, 30 passed, 9 failed 

39 test total, 30 passed, 9 failed

02:15:33.095SUITE  Camera Tests

00:00:05.012SETUP  s100_keywords . Start Suite

00:00:00.004TEARDOWN  CubeSatAutomation . Client Close

00:03:35.311TEST  Imaging mode - Default parameters

00:03:02.276TEST  Imaging mode - Exposure 10000 Gain-Target 60

00:02:59.273TEST  Imaging mode - Exposure 10000 Gain-Target 90

00:02:24.241TEST  Imaging mode - Exposure 10000 Gain-Target 120

00:02:18.221TEST  Imaging mode - Exposure 10000 Gain-Target 150

00:02:47.265TEST  Imaging mode - Exposure 10000, Jpeg quality 20

00:02:47.261TEST  Imaging mode - Exposure 10000, Jpeg quality 60

00:02:52.277TEST  Imaging mode - Exposure 10000, Jpeg quality 80

00:04:04.392TEST  Imaging mode - Exposure 10000, Jpeg quality 100

00:03:51.372TEST  Imaging mode - Exposure 10000, Color correct false

00:04:25.422TEST  Imaging mode - Exposure 10000, Gamma correct false

00:04:18.417TEST  Imaging mode - Exposure 10000, White balance true

00:05:17.503TEST  Imaging mode - Exposure 10000, Color correct & gamma correct false

00:02:52.282TEST  Imaging mode - Exposure 30000, Default parameters

00:03:17.315TEST  Imaging mode - Exposure 30000 Gain-Target 60

00:02:58.285TEST  Imaging mode - Exposure 30000 Gain-Target 90

00:02:18.225TEST  Imaging mode - Exposure 30000 Gain-Target 120

00:02:32.231TEST  Imaging mode - Exposure 30000 Gain-Target 150

00:02:31.246TEST  Imaging mode - Exposure 30000, Jpeg quality 20
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00:03:01.296TEST  Imaging mode - Exposure 30000, Jpeg quality 60

00:02:46.278TEST  Imaging mode - Exposure 30000, Jpeg quality 80

00:04:28.453TEST  Imaging mode - Exposure 30000, Jpeg quality 100

00:04:11.406TEST  Imaging mode - Exposure 30000, Color correct false

00:05:04.467TEST  Imaging mode - Exposure 30000, Gamma correct false

00:04:29.427TEST  Imaging mode - Exposure 30000, White balance true

00:05:13.472TEST  Imaging mode - Exposure 30000, Color correct & gamma correct false

00:03:20.334TEST  Imaging mode - Exposure 90000, Default parameters

00:03:19.321TEST  Imaging mode - Exposure 90000 Gain-Target 60

00:02:56.294TEST  Imaging mode - Exposure 90000 Gain-Target 90

00:02:29.245TEST  Imaging mode - Exposure 90000 Gain-Target 120

00:02:20.233TEST  Imaging mode - Exposure 90000 Gain-Target 150

00:02:22.235TEST  Imaging mode - Exposure 90000, Jpeg quality 20

00:02:20.231TEST  Imaging mode - Exposure 90000, Jpeg quality 60

00:02:27.237TEST  Imaging mode - Exposure 90000, Jpeg quality 80

00:03:32.336TEST  Imaging mode - Exposure 90000, Jpeg quality 100

00:03:57.416TEST  Imaging mode - Exposure 90000, Color correct false

00:05:04.473TEST  Imaging mode - Exposure 90000, Gamma correct false

00:05:23.523TEST  Imaging mode - Exposure 90000, White balance true

00:05:27.526TEST  Imaging mode - Exposure 90000, Color correct & gamma correct false
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20180102 13:37:03 GMT+02:00

Critical Tests
All Tests

OPMODE-RAW

Payload Tests Rawmode 5

Payload Tests Rawmode 5 Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
4 4 0 00:42:16
4 4 0 00:42:16

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
4 4 0 00:42:16

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
4 4 0 00:42:21

Test Execution Log

Full Name: Payload Tests Rawmode 5
Source: /home/juha/soft/pypractice/CSAdev/suites/payload_tests_rawmode_5.robot
Start / End / Elapsed: 20180102 12:54:41.751 / 20180102 13:37:03.224 / 00:42:21.473
Status: 4 critical test, 4 passed, 0 failed 

4 test total, 4 passed, 0 failed

00:42:21.473SUITE  Payload Tests Rawmode 5

00:00:05.011SETUP  s100_keywords . Start Suite

00:00:00.011TEARDOWN  CubeSatAutomation . Client Close

00:04:10.208TEST  Raw Mode - 5 Mhz Default parameters

00:04:07.947TEST  Raw Mode - 5 Mhz Zeros as parameters

00:04:13.567TEST  Raw Mode - 5 Mhz Default parameters, sample rate 48k

00:29:44.471TEST  Raw Mode - 5 Mhz 1000000 times
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Critical Tests
All Tests

OPMODE-LOWOBS

Payload Tests Lowobsmode 5

Payload Tests Lowobsmode 5 Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
9 9 0 00:32:11
9 9 0 00:32:11

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
9 9 0 00:32:11

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
9 9 0 00:32:16

Test Execution Log

Full Name: Payload Tests Lowobsmode 5
Source: /home/juha/soft/pypractice/CSAdev/suites/payload_tests_lowobsmode_5.robot
Start / End / Elapsed: 20180102 14:50:26.482 / 20180102 15:22:42.800 / 00:32:16.318
Status: 9 critical test, 9 passed, 0 failed 

9 test total, 9 passed, 0 failed

00:32:16.318SUITE  Payload Tests Lowobsmode 5

00:00:05.011SETUP  s100_keywords . Start Suite

00:00:00.008TEARDOWN  CubeSatAutomation . Client Close

00:04:04.547TEST  Lowobs Mode - 5 Mhz Default parameters

00:03:06.495TEST  Lowobs Mode - 5 Mhz Zeros as parameters

00:03:02.048TEST  Lowobs Mode - 5 Mhz Default parameters, output_type 1

00:03:02.564TEST  Lowobs Mode - 5 Mhz Default parameters, output_type 2

00:03:00.627TEST  Lowobs Mode - 5 Mhz Default parameters, output_type 3

00:03:01.630TEST  Lowobs Mode - 5 Mhz Default parameters, sample rate 48k

00:06:18.653TEST  Lowobs Mode - 5 Mhz 10000 times

00:03:00.719TEST  Lowobs Mode - 5 Mhz 100 times, 10 points in average

00:03:33.747TEST  Lowobs Mode - 5 Mhz 100 times, 1000 points in average
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Critical Tests
All Tests

OPMODE-TARGET

Payload Tests Targetmode

Payload Tests Targetmode Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
6 6 0 02:10:32
6 6 0 02:10:32

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
6 6 0 02:10:32

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
6 6 0 02:10:38

Test Execution Log

Full Name: Payload Tests Targetmode
Source: /home/juha/soft/pypractice/CSAdev/suites/payload_tests_targetmode.robot
Start / End / Elapsed: 20180103 10:37:53.369 / 20180103 12:48:30.925 / 02:10:37.556
Status: 6 critical test, 6 passed, 0 failed 

6 test total, 6 passed, 0 failed

02:10:37.556SUITE  Payload Tests Targetmode

00:00:05.010SETUP  s100_keywords . Start Suite

00:00:00.007TEARDOWN  CubeSatAutomation . Client Close

00:22:25.392TEST  Target Mode - Default parameters

00:20:18.144TEST  Target Mode - Zeros as parameters

00:21:21.401TEST  Target Mode - output_type 3

00:21:55.296TEST  Target Mode - Other antenna

00:22:38.615TEST  Target Mode - N_ave 1000

00:21:53.307TEST  Target Mode - Default parameters, sample rate 48k
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Critical Tests
All Tests

OPMODE-COMM
OPMODE-RAW

Flight Planner Tests

Flight Planner Tests Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
7 4 3 00:09:00
7 4 3 00:09:00

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
5 4 1 00:06:07
2 0 2 00:02:52

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
7 4 3 00:09:05

Test Execution Log

Full Name: Flight Planner Tests
Source: /home/juha/soft/pypractice/CSAdev/suites/flight_planner_tests.robot
Start / End / Elapsed: 20171127 11:14:31.973 / 20171127 11:23:36.998 / 00:09:05.025
Status: 7 critical test, 4 passed, 3 failed 

7 test total, 4 passed, 3 failed

00:09:05.025SUITE  Flight Planner Tests

00:00:05.006SETUP  s100_keywords . Start Suite

00:00:00.004TEARDOWN  CubeSatAutomation . Client Close

00:01:09.055TEST  Simple Flight Planner

00:00:33.052TEST  Invalid Flight Planner

00:00:49.089TEST  Delete Flight Planner

00:01:29.094TEST  Simple Repeating Flight Planner

00:02:07.172TEST  Create Larger Flight Planner

00:01:22.140TEST  Create Flight Planner for Low Observation Mode

00:01:30.158TEST  Create Flight Planner for Low Observation and Imaging Modes
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Critical Tests
All Tests

OPMODE-IMAGING
OPMODE-LOWOBS
OPMODE-POWER

Hk Tests

Hk Tests Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
11 11 0 00:36:21
11 11 0 00:36:21

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
1 1 0 00:05:51
1 1 0 00:07:30
9 9 0 00:23:00

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
11 11 0 00:36:26

Test Execution Log

Full Name: Hk Tests
Source: /home/juha/soft/pypractice/CSAdev/suites/hk_tests.robot
Start / End / Elapsed: 20171218 10:34:16.608 / 20171218 11:10:43.000 / 00:36:26.392
Status: 11 critical test, 11 passed, 0 failed 

11 test total, 11 passed, 0 failed

00:36:26.392SUITE  Hk Tests

00:00:05.012SETUP  s100_keywords . Start Suite

00:00:00.009TEARDOWN  CubeSatAutomation . Client Close

00:02:21.185TEST  Download and verify housekeeping

00:00:25.060TEST  Get EPS HK directly

00:00:19.046TEST  Get NanoComm HK

00:02:58.244TEST  Set HK collection and reboot satellite

00:03:55.340TEST  Reload previous HK collection parameters

00:02:11.188TEST  Get HK type 1

00:02:20.194TEST  Get HK type 2

00:03:47.339TEST  Get Telemetries

00:04:42.676TEST  Collect and plot HK data when NanoCam and radio payload are on and off

00:05:50.847TEST  Collect an plot HK data during camera operation

00:07:29.988TEST  Collect and plot HK data during radio payload operation
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Critical Tests
All Tests

OPMODE-COMM
OPMODE-IDLE
OPMODE-IMAGING
OPMODE-LOWOBS
OPMODE-POWER

Reboot Tests

Reboot Tests Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
12 11 1 00:16:20
12 11 1 00:16:20

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
5 5 0 00:06:40
1 1 0 00:01:53
1 1 0 00:02:24
1 1 0 00:01:50
4 3 1 00:03:33

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
12 11 1 00:16:26

Test Execution Log

Full Name: Reboot Tests
Source: /home/juha/soft/pypractice/CSAdev/suites/reboot_tests.robot
Start / End / Elapsed: 20171218 15:45:20.817 / 20171218 16:01:46.564 / 00:16:25.747
Status: 12 critical test, 11 passed, 1 failed 

12 test total, 11 passed, 1 failed

00:16:25.747SUITE  Reboot Tests

00:00:05.011SETUP  s100_keywords . Start Suite

00:00:00.005TEARDOWN  CubeSatAutomation . Client Close

00:00:29.050TEST  EPS reboot

00:00:13.032TEST  OBC reboot

00:00:51.080TEST  Camera payload reboot

00:00:47.073TEST  Comm system reboot

00:02:00.174TEST  Shutdown systems and verify their absence

00:01:53.169TEST  Shutdown all systems except EPS and reboot system

00:01:50.167TEST  Reboot occuring during radio payload operation

00:02:24.198TEST  Reboot occuring during picture download

00:02:04.176TEST  Reboot occuring during file download

00:02:08.179TEST  Reboot occuring during file upload

00:01:01.101TEST  Reboot occuring during param list update

00:00:39.065TEST  Reboot occuring during flight planner creation
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Critical Tests
All Tests

OPMODE-SOFTUPDATE

Softupdate Tests

Softupdate Tests Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
3 3 0 00:12:33
3 3 0 00:12:33

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
3 3 0 00:12:33

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
3 3 0 00:12:38

Test Execution Log

Full Name: Softupdate Tests
Source: /home/juha/soft/pypractice/CSAdev/suites/softupdate_tests.robot
Start / End / Elapsed: 20171128 16:07:02.573 / 20171128 16:19:40.615 / 00:12:38.042
Status: 3 critical test, 3 passed, 0 failed 

3 test total, 3 passed, 0 failed

00:12:38.042SUITE  Softupdate Tests

00:00:05.006SETUP  s100_keywords . Start Suite

00:00:00.004TEARDOWN  CubeSatAutomation . Client Close

00:05:24.282TEST  Upload new software and reboot using it

00:02:35.124TEST  Reboot to default software

00:04:33.371TEST  Upload invalid software image and see that nanomind returns to the default software
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Generated
20180112 15:45:21 GMT+02:00

Critical Tests
All Tests

OPMODE-COMM
OPMODE-IMAGING
OPMODE-LOWOBS
OPMODE-POWER

Dayinthelife1 Mod

Dayinthelife1 Mod Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
4 4 0 00:10:40
4 4 0 00:10:40

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
1 1 0 00:05:04
1 1 0 00:01:12
1 1 0 00:02:38
1 1 0 00:01:46

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
4 4 0 00:10:40

Test Execution Log

Full Name: Dayinthelife1 Mod
Source: /home/petri/s100/Testautomation/suites/dayinthelife1_mod.robot
Start / End / Elapsed: 20180112 15:34:40.870 / 20180112 15:45:21.287 / 00:10:40.417
Status: 4 critical test, 4 passed, 0 failed 

4 test total, 4 passed, 0 failed

00:10:40.417SUITE  Dayinthelife1 Mod

00:00:00.003SETUP  CubeSatAutomation . Client Start None, /home/petri/s100/EGSE/csp-client-v1.1/build/csp-client, -a 10 -z localhost

00:00:00.005TEARDOWN  CubeSatAutomation . Client Close None

00:01:45.857TEST  Come from eclipse - Verify charging

00:01:12.159TEST  Come from eclipse - Take image

00:02:38.110TEST  Come from eclipse - Record radio signals

00:05:04.025TEST  Come from eclipse - Downlink data
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20180209 13:22:47 GMT+02:00

Critical Tests
All Tests

OPMODE-COMM
OPMODE-POWER

Dayinthelife2 Mod

Dayinthelife2 Mod Test Log

Test Statistics

Total Statistics Total Pass Fail Elapsed Pass / Fail
5 4 1 00:50:03
5 4 1 00:50:03

Statistics by Tag Total Pass Fail Elapsed Pass / Fail
3 2 1 00:44:31
2 2 0 00:05:32

Statistics by Suite Total Pass Fail Elapsed Pass / Fail
5 4 1 00:50:04

Test Execution Log

Full Name: Dayinthelife2 Mod
Source: /home/petri/s100/Testautomation/suites/dayinthelife2_mod.robot
Start / End / Elapsed: 20180209 12:32:44.067 / 20180209 13:22:47.845 / 00:50:03.778
Status: 5 critical test, 4 passed, 1 failed 

5 test total, 4 passed, 1 failed

00:50:03.778SUITE  Dayinthelife2 Mod

00:00:00.003SETUP  CubeSatAutomation . Client Start None, /home/petri/s100/EGSE/csp-client-v1.1/build/csp-client, -a 10 -z localhost

00:00:00.008TEARDOWN  CubeSatAutomation . Client Close None

00:02:43.865TEST  Come from eclipse - Verify charging

00:07:55.496TEST  Come from eclipse - Set flight planner commands

00:20:15.702TEST  Go to eclipse - Wait during the time that the satellite is out reach

00:02:48.304TEST  Come from eclipse - Verify charging again

00:16:20.121TEST  Come from eclipse - Downlink data

119


	Abstract 
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Increasing interest in space
	Substantial proportion of failed CubeSat missions
	Suomi 100 CubeSat
	Research purpose and goals
	Main questions and problems
	Outlining the scope of research

	Background
	CubeSat failures
	The CubeSat satellite specification
	Failure rates of CubeSats
	Contribution of different subsystems to satellite failures
	Needs for system integration level functional testing
	Comparison of CubeSat failures to failures with larger spacecraft

	Satellite testing
	Practices for software testing
	Space industry methodologies

	Test automation
	Test automation frameworks
	Robot Framework

	Suomi 100 satellite mission
	Mission requirements
	Satellite operation modes
	Instrument modes
	Automated functional system integration testing


	Methods and Setup
	Suomi 100 satellite
	Subsystems
	Gomspace software
	Satellite control software - CSP Client
	Software for radio payload

	Automating testing of Suomi 100
	API and communication layers for CSP Client software
	Python libraries
	Robot framework test suites

	Test setups and environment simulation
	Camera payload testing
	Radio payload testing
	Satellite basic operations testing
	Operational scenario testing, "Day in the life"


	Results and Discussion
	Executed tests
	Camera payload
	Radio payload
	Satellite basic operations
	"Day in the life" operational scenarios

	Release version of CubeSatAutomation test library
	Improving CubeSat reliability: "Day in the life of a CubeSat" test
	Test design
	Improved requirements and operational specifications


	Conclusions
	References
	CubeSatAutomation function library
	API for CSP client
	Robot Framework test suites
	Robot Framework Test Results

